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EXECUTIVE SUMMARY 

The invasion and establishment of Anopheles stephensi represents an imminent and potentially substantial 
threat to Ethiopia and the wider African region. Over the last 20 years, Ethiopia has seen substantial 
reduction in the burden of malaria. The addition of An. stephensi as a highly competent and adaptable vector 
could reverse this trend. To understand the potential magnitude of the problem we adapted a mechanistic 
model of malaria transmission and estimated the increase in vector densities required to explain the rise in 
malaria reported in Djibouti following the discovery and proliferation of An. stephensi. Assuming similar 
levels of An. stephensi invasion into areas of Ethiopia under 2000m and previously found suitable (Sinka et 
al., 2020), we predict the possible public health impact by incorporating local data on vector bionomics, 
pre-existing malaria prevalence, current use of vector control and drug treatment.  

The possible increase in malaria is highly uncertain, but the impact could be considerable. In a conservative 
scenario the median relative increase in malaria prevalence is ~330% from current levels. Translating this 
to incidence in areas below 2000m, and that are estimated to be suitable for An. stephensi (Sinka et al., 2020), 
this could result in a 19-87% increase (95% CI 5-338%), corresponding to a crude increase of clinical cases 
of ~500,000 to 620,000 a year after establishment (with a possible plausible range from 140,000-2,406,000 
additional cases). Subnationally, there is significant heterogeneity in expected public health impact 
dependent on pre-existing transmission, ongoing interventions and altitude (Figure 1). Models suggest that 
low altitude urban areas with current negligible malaria transmission risk seeing the highest increases in 
disease prevalence. In these areas the absence of existing vector control and low immunity indicates the 
possibility for substantial increases in transmission. High levels of pyrethroid resistance observed in An. 
stephensi captured in Ethiopia (Yared et al., 2020) suggest pyrethroid-only insecticide treated nets (ITNs) in 
use across the country will have a reduced efficacy for control of malaria transmitted by An. stephensi. 

To combat the increase of malaria transmission following An. stephensi establishment, the deployment of a 
wide array of vector control interventions should be considered. Here we have modelled the impact of 
combinations of ITNs at various levels of use, indoor residual spraying (IRS) and reduction in adult 
emergence (through larvicide or breeding container management) once An. stephensi has invaded. It should 
be stressed that these estimates are highly speculative given that it is unclear how impacted the invading 
vector will be to these interventions. Subnationally, the impact of these interventions depends on what has 
already been implemented and current malaria transmission. Models indicate a multifaceted approach is 
needed to reduce the additional cases to a level that approaches transmission prior to An. stephensi 
introduction. Through combinations of high coverage of ITNs, IRS and larvicide, there is substantial 
potential to reduce the increase in annual malaria incidence from ~0.62 million cases, to ~0.27 million 
additional cases a year (Figure 2). Greater reductions maybe possible with more effective or targeted efforts, 
though they will need to be expanded to much of the population at a significant expected cost. The most 
comprehensive set of interventions investigated (80% use of ITNs, 80% of mosquito resting structures 
sprayed and a 40% reduction in adult emergence due to larviciding) it is estimated to cost ~$70 million 
dollars ($38-$101 million) per year, and $142 ($78- $204) per case averted. We do not currently attempt to 
quantify the economic burden of additional malaria cases, though it is likely to be substantial. 

The establishment of An. stephensi as an additional malaria vector represents a significant change to malaria 
control strategies in Ethiopia and beyond. Predicting the public health impact is highly unclear, but its 
potential magnitude and the likelihood of it potentially reversing decades of hard-fought reductions 
necessitate it being a global health priority. 
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FIGURE 1. IMPACT OF ANOPHELES STEPHENSI ESTABLISHMENT ON PREVALENCE AND INCIDENCE OF 
MALARIA IN ETHIOPIA.   

A) Illustrative malaria slide prevalence before and after the establishment of An. stephensi for example 
regions of existing high, medium and low disease prevalence. An. stephensi invasion is denoted to start 
by the left vertical dashed lines. B) Estimates of malaria prevalence increase across the different 
administrative units in Ethiopia by data source. Horizontal line show average increase whilst points 
denote the increase in different individual admin regions. C) Overall projected increase in annual 
incidence across Ethiopia for the different data sources. Individual points show uncertainty in the 
overall estimates individual LHC estimates. 

 
 

  

FIGURE 2. THE POTENTIAL IMPACT OF DIFFERENT COMBINATIONS OF CONTROL INTERVENTIONS ON 
MALARIA TRANSMISSION. 

Here the MAP and NMEP data is combined to produce a median increase that is used to estimate A) 
The median increase of malaria under different ITN usage and IRS coverage started 3 years after the 
introduction of An. stephensi, B) the additional benefit from larvicide which achieves different 
percentage of reduced adult emergence when ITN usage and IRS coverage is at 80%. 
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LIMITATIONS 
This body of work encompasses substantial assumptions and extrapolations on how malaria transmission 
will be affected by the establishment of Anopheles stephensi in Ethiopia. If, how and where it will invade and 
the impact it will have are currently all unknown. As a result, the report should be read as a possible scenario 
of what could happen, not as a prediction of what will happen. We have simulated different scenarios making 
explicit assumptions about how entomological and epidemiological factors may influence disease burden 
and all results should be interpreted in light of these assumptions. We have also included confidence interval 
estimates on many parameters to reflect their underlying uncertainty. This uncertainty should not be 
interpreted as the full range of future trajectories which will be substantially greater. We have additionally 
highlighted which of these parameters could be further refined to better parameterize the model. 

Though there is a strong temporal correlation between malaria incidence increases in Djibouti and 
An. stephensi introduction (Seyfarth et al., 2019), there is no evidence to indicate that it is causative. 
Furthermore, we have assumed that An. stephensi is the sole vector responsible for malaria transmission 
when fitting the data in Djibouti. This is consistent with data presented by Naval Medical Research Unit-
No. 3 in Djibouti, but is certainly an oversimplification of the transmission dynamics, given the presence 
of An. arabiensis, in Djibouti and could potentially inflate our results. However, malaria incidence in the 
early 2010’s was almost negligible in Djibouti, but by 2019 they had an estimated ~50,000 cases per year, 
and so without additional data to the contrary, this was the most parsimonious approach. 

Initially mosquito invasion dynamics have been simplified, assuming that all of Ethiopia is suitable for An. 
stephensi establishment and that human-to-mosquito densities universally reach the same level as observed 
in Djibouti. This is certainly unlikely to be the case but is currently the most parsimonious explanation in 
the absence of other information. Certain locations are likely to be more or less suitable due to local 
ecological and anthropological conditions, as well as inter-species competition with other mosquito species. 
This will likely change both the presence/absence of the species but also their relative abundance. While 
not accounting for these directly, we have tested the presence/absence assumption by only predicting 
increases into areas that have been previously estimated to be suitable for An. stephensi following an early 
geostatistical analyses (Sinka et al., 2020) and in those regions under 2000m (Figure 9). While this makes a 
substantial difference to the overall cases we still estimate an additional ~0.5-0.62 (0.14 – 2.4) million cases 
(compared to ~4.3-5.3 (1.1 – 22.2) million if the whole country is suitable). This different geographical 
spread will substantially affect the cost of scaling up interventions. The vector is may additionally be capable 
of establishing outside of areas previously predicted to be suitable, and by including the effect of a 
temperature dependent extrinsic incubation period (EIP), we can partially account for the effect of altitude 
on malaria transmission. This is shown by many of the regions at higher altitudes, with longer EIPs, have 
minor increases in prevalence (Figure 14). The model also assumes that invasion happens simultaneously 
everywhere in the country. This is again highly unlikely, though true rate of spread through the country is 
currently unknown. Our assumption allows the increase in cases to be observed across the region to be 
independent of the rate of geographical spread. A more realistic increase in burden would be staggered as 
establishment will likely vary, which has been seen in An. stephensi primarily being detected in Eastern 
Ethiopia, so far (Tadesse et al., 2021).   

While we have made use of all available published and unpublished sources on An. stephensi bionomics in 
its endemic range (Manouchehri et al., 1976, Mehravaran et al., 2012, Vatandoost et al., 2006, Mojahedi et 
al., 2020, Basseri et al., 2010, Basseri et al., 2012, Maghsoodi et al., 2015, Thomas et al., 2017, Sinka et al., 
2020, Herrel et al., 2004, Reisen and Boreham, 1982, Pramanik et al., 2006, Soleimani-Ahmadi et al., 2012), 
and in Africa (Tadesse et al., 2021, Seyfarth et al., 2019, The PMI VectorLink Project, 2020, Balkew et al., 
2020) there is either insufficient data or substantial within species variability to simply ascribe a set of 
characteristics to how An. stephensi will interact with humans and control interventions in Ethiopia. In order 
to capture a range of possibilities in vector bionomics, we assumed a range of likely values for 
anthropophagy, daily mortality, endophily, the proportion of bites taken indoors and in bed and sampled 



 

4 

across this range during both the initial fitting to Djibouti data, and the forward extrapolation to Ethiopia. 
It should be stressed that these vector bionomics will influence the effectiveness of vector control 
interventions against the invading species, so these need to be verified as a matter of urgency. 

DATA COLLECTION TO INFORM MATHEMATICAL MODELLING 
Improved understanding of the current entomological and epidemiological situation in regions where An. 
stephensi may invade will improve projections of its potential public health impact and how effective 
mitigation measures will be. This analyses has highlighted how the increase in malaria burden depends on 
current malaria endemicity, so more detailed knowledge of the heterogeneity in malaria prevalence and the 
existing use of vector control interventions in urban and peri-urban areas where the mosquito might invade 
will be key to understanding overall impact. Malaria burden is also heavily dependent on the abundance of 
the invading mosquito species and so an understanding of the carrying capacity of the species in the new 
environment (and how this varies between regions) will enable more tailored projections. 

Uncertainty in vector bionomics and behaviours have necessitated several assumptions in this modelling 
framework. These unknowns, and the sampling structure designed to compensate for them, introduce 
substantial uncertainty into the results. While a level of uncertainty is expected, with further data on the 
vector and its role in transmission this can be substantially reduced. Some of the most important vector 
parameters and what they influence are listed below. We also list the important factors determining 
intervention effectiveness, many of which will depend on the level of effort deployed. An understanding of 
the price of these different levels of effort will allow further refinement of the cost-effectiveness analyses.  

Parameter type Parameter What it informs 

Vector 
bionomic/behaviour 

Life-expectancy of An. stephensi in 
Africa  

Disease endemicity and impact of 
interventions 

Anthropophagy (human blood index) Disease endemicity and impact of 
interventions 

Endophily Impact of IRS 
Proportion of mosquito bites taken 
when people indoors 

Impact of IRS and ITN 

Proportion of mosquito bites taken 
when people in bed 

Impact of IRS and ITN 

Sporozoite rate in different vector 
species 

Estimate of the relative significance of the 
invading mosquito population in relation to 
other local species. 

Seasonality of An. stephensi 
abundance 

Impact and requisite frequency of IRS 

Intervention Efficacy 

Level of pyrethroid resistance Effectiveness of ITNs (both pyrethroid-only 
and pyrethroid-PBO nets) 

Percentage of mosquito resting sites 
accessible to IRS campaigns. 

Impact and requisite frequency of IRS 

Durability of IRS in structures in the 
region (will vary between products) 

Impact and requisite frequency of IRS 

Reduction in emergence of adult 
mosquitoes due to larval source 
management 

Impact of larval source management 
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1. METHODS 

1.1 HUMAN POPULATION SIZES  
Administrative unit human population sizes were obtained by using WorldPop  2020 population raster, 
which provides population estimates at a 1/120 degree resolution (World Population Prospects). This was 
then standardised to the 2020 Ethiopia country level population estimate from the UN World Population 
prospects (United Nations, 2020). This raster was then applied to the administrative boundaries in order to 
estimate populations in each unit.  

To estimate the population below a certain altitude or within areas found suitable by previous research 
(Sinka et al., 2020), we applied theses limits to the above standardised population raster using a suitability 
raster provided by Sinka et al., (2020) and altitude from WorldClim (Fick and Hijmans, 2017). 

1.2 TEMPERATURE AND EIP DATA 
Temperature data was accessed by WorldClim (Fick and Hijmans, 2017) which provided monthly 
temperature data at the maximum, mean and minimum for 2010-2018.  

Highland regions of Ethiopia are predicted to be too cold to sustain malaria transmission throughout the 
year. As a result, here we have used the hottest months mean maximum temperature in the year, as it 
represents the “extreme” scenario – with the fastest EIP. While this may overestimate the value of EIP 
overall, the majority of malaria transmission occurs in relatively short “transmission seasons”, and so it only 
takes a few months of heightened suitability in an otherwise less suitable temperature clime to have a 
substantial effect. Furthermore, additional sensitivity analysis found that taking the corresponding 
mean/minimum temperature had little impact on overall incidence (Figure 13). This was then averaged 
over the period to produce a single raster file of temperature at a resolution of 1/120 degrees. 

This temperature was then converted into EIP based on a previous quantification by Stopard et al., (2021) 
which provided a description of the temperature dependent relationship of Plasmodium falciparum in Anopheles 
stephensi (Stopard et al., 2021) (Figure 3). As this temperature relationship was modelled on a limited set of 
temperatures (21-34 °C) it was necessary to extrapolate this further to capture the temperature range of 
Ethiopia. This necessitated applying the maximum EIP modelled for temperatures lower than 21 °C, for 
temperatures above 34 °C direct extrapolation was possible, and the relationship extended. In order to 
account for the persistence of Plasmodium vivax at lower temperatures, the fitted results of P. falciparum in 
An. stephensi was modulated by applying the ratio of EIP of P. falciparum to P. vivax estimated from the 
original Detinova degree day model (Detinova, 1962). For the NMEP data, due to the lack of species 
specific identifier, we default to the Plasmodium falciparum temperature dependent EIP as it is the most 
formally quantified. 

This EIP estimate for each species was converted to the administrative level by taking the mean EIP in an 
area. All other mosquito bionomics and factors influencing transmission biology are assumed to be 
independent of temperature or altitude. 
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FIGURE 3. HOW PARASITE EXTRINSIC INCUBATION PERIOD IS ASSUMED TO VARY ACROSS ETHIOPIA.  

A) Relationship between the extrinsic incubation period (days) and temperature for the development 
of Plasmodium falciparum and vivax in Anopheles stephensi in laboratory studies. B) The maximum 
monthly annual temperature across Ethiopia. C) Predicted EIP derived from the maximum temperature 
for P. falciparum and D) P. vivax. 

 

  

1.2.1 PLASMODIUM PREVALENCE, INCIDENCE, IRS, TREATMENT, AND ITN COVERAGE 
Prevalence and treatment (effective treatment with any antimalarial drug) in Ethiopia, were provided by the 
Malaria Atlas Project (MAP) through the R package, malariaAtlas (Pfeffer et al., 2018). The population-
weighted mean value was then taken to provide the value at the 2nd administrative division. 

Different estimates of the current level of malaria in Ethiopia exist. The MAP database was used to generate 
regional prevalence estimates aggregated to the administrative level by taking the population weighted mean 
(Figure 4). Predictions of the overall number of clinical cases were then generated by adjusting the 
transmission dynamics model (parameterised with malaria prevalence data) to the number of clinical cases 
to the values provided by the modelled estimates of malaria incidence in the World Malaria Report (WMR) 
2020. This predicted a total of 2,614,852 cases (range 1,453,000 to 3,907,000). Incidence was also provided 
by the Ethiopian National Malaria Elimination Programme (NMEP) at the 1st administrative division. This 
source of data indicated a total of 712,021 cases in 2020 which is substantially less than the predicted cases 
reported in the WMR 2020. Both of these data sources are used independently to parameterise model runs 
in order to account for the uncertainty in the baseline assessments of malaria endemicity.  

ITN coverage at the 1st administrative division, and IRS at the 2nd, was provided through a survey and 
shared through personal communication (National Malaria Control and Elimination Programme, 2020). In 
order to simplify the analysis and interpretation, we have assumed that coverage is the same as utilisation – 
while noting this is a limitation. 
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FIGURE 4. PARAMETERS INCLUDED FOR EACH ADMINISTRATIVE GROUPING  

A) IRS coverage (percent), B) ITN coverage (percent),, C) treatment coverage (percent),, D) EIP for P. 
falciparum (days), E) EIP for P. vivax (days) 

 
 

 
 

FIGURE 5. CURRENT MALARIA PREVALENCE ASSESSED BY MAP AND INCIDENCE BY THE NMEP.  

A) MAP prevalence (2-10 years old) for P. falciparum, B) MAP prevalence (all ages) for P. vivax, and C) 
NMEP annual incidence per 1000, for malaria (all ages and species). 

1.3 SHAPEFILES AND GROUPING ADMINISTRATIVE UNITS 
Shapefiles were provided through the humanitarian data exchange 
(https://data.humdata.org/dataset/ethiopia-cod-ab) at the country, 1st, 2nd and 3rd administrative unit level. 

Administrative units at the 3rd level were grouped based on their pre-existing transmission, interventions 
and EIP. Here we round prevalence to the nearest 5%, with an additional value of 1% as to capture areas 
with low but not negligible levels of transmission which account for much of Ethiopia. Interventions and 
treatment coverages were rounded to the nearest 20% and EIP to the nearest integer. This rounding allows 
us to substantially reduce the number of runs required, and by using approximate rather than “exact” values 
from the data we aim to not overstate the accuracy of our findings. 

By then grouping administrative locations by their combination of parameters, we can reduce the number 
of simulations required from 690 (each individual adm3 location) to 64 for those utilising the MAP 
prevalence data, and 43 for the NMEP incidence data. A full list of locations and values is available in the 
Appendix (Table 4). 

https://data.humdata.org/dataset/ethiopia-cod-ab
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1.4 VECTOR BIONOMICS AND LATIN HYPERCUBE SAMPLING  
A rapid literature search was undertaken aimed at finding An. stephensi specific bionomics in order to 
parameterise the mechanistic model. Data on An. stephensi’ s behaviour within Africa was sparse, and so 
most of the information available comes from studies in Iran, India and Pakistan, with limited data from 
Ethiopia. 

Due to the relatively low number of studies, 20, from which the data was collected, and large uncertainty 
around how the vector would behave, we incorporated parameter sampling in the modelling fitting and 
extrapolation stage. This was done through taking the median value from the data, and sampling from 
values 25% smaller and 25% larger than this Table 1. Except for the proportion of blood meals taken on 
humans, which was ranged from 0.1 to 0.4 given the variations seen across its endemic range, and the 
importance of the parameter on the model. There is no clear picture of how An. stephensi abundance changes 
with rainfall in Asia, and so mosquito density in Ethiopia is assumed to remain consistent throughout the 
year.   

From this we undertake Latin hypercube sampling (LHS) which is a statistical method for generating near-
random samples of parameter values from a multidimensional distribution. This allows us to efficiently 
sample different parameter combinations in order to generate uncertainty in predictions (Iman, 2014). 

Resistance to pyrethroids was taken from, unpublished estimates of An. stephensi resistance in Ethiopia from 
work carried out by the PMI VectorLink Project and estimated at a 57% survival in a discriminating dose 
bioassay (Yared et al., 2020). This value was assumed throughout the country given the absence of data 
from most regions. 

TABLE 1. PARAMETERS AND VALUES USED IN LATIN HYPERCUBE SAMPLING  

Parameter Values 
Daily mortality 0.093 – 0.154 
Proportion of blood meals taken on humans 0.1 – 0.4 
Anthropophilly 0.375 – 0.625 
Bites taken indoors 0.358 – 0.597 
Bites taken in bed 0.391 – 0.652 

 

1.5 COST OF INTERVENTIONS PER PERSON 
Approximate estimates of the cost of intervention (purchasing, delivering, and applying) were provided 
from literature and from the PMI through personal communication. We have assumed 1.8 people per ITN, 
which were assumed to be standard pyrethroid nets. 

TABLE 2. APPROXIMATE ESTIMATED COSTS PER PERSON PER YEAR FOR THE DIFFERENT VECTOR 
CONTROL INTERVENTIONS CONSIDERED 

Intervention Costing estimate per year per person 
Low Medium High 

ITN-pyrethroid $0.43 $0.45 $0.49 
IRS $3.35 $6.19 $8.9 
Larvicide $1.00 $2.00 $3.00 

 

1.6 MECHANISTIC MODEL 
Here we use a deterministic version of a well-established and highly utilised compartmental model of 
Plasmodium falciparum malaria transmission (Griffin et al., 2014, Challenger et al., 2021, Griffin et al., 2010, 
White et al., 2011, Griffin et al., 2016), which models transmission within humans at various stages of 
infection, and the vectors themselves. We account for heterogeneity in transmission as well as age-
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dependent biting rates and the acquisition of natural immunity. The model has previously been described 
fully in the aforementioned publications, but we summarise it briefly below (Figure 6). 

When Susceptible (S) individuals become infected, they progress to either an asymptomatic (A) state or 
clinical disease, dependent on the force of infection, Λ, and the probability of acquiring clinical disease, φ, 
which is dependent on natural immunity. Dependent on infection, those progressing to clinical disease 
either enter the treated (T) or clinical disease (D) compartment dependent on the probability of treatment 
(fT). Treated individuals progress through to a period of protection through prophylaxis (P), at rate rT, and 
return to the susceptible compartment at rate rP.  

Individuals in clinical disease (D) remain symptomatic for the duration of the disease course, rD, then move 
to an asymptomatic state (A), which is detectable through microscopy, before the infection becomes 
submicroscopic and so undetectable through microscopy (U) at rate rA. Asymptomatic individuals (in either 
the A or U compartment) can develop clinical disease, but if they do not, they clear the infection and return 
to the symptomatic compartment at rate rU. Adult mosquito populations are modelled through a susceptible 
(Sm) and progress to the exposed (Em) state at rate Λm, and onto the infectious (Im) after the extrinsic 
incubation period (EIP) has been completed. Mosquitoes are exposed to human infection through feeding 
through the treated (T), clinical disease (D), asymptomatic (A) and submicroscopic (U) infection states.  

To simulate the invasion of An. stephensi, the vector density is increased in a sigmoidal fashion over 3 years 
so that malaria clinical incidence best fits that reported in the Djibouti data (Figure 8). 

The package required to run the model and a version of the model code is found at 
https://github.com/mrc-ide/deterministic-malaria-model. 

FIGURE 6. MODEL DIAGRAM SHOWING THE PROGRESSION BETWEEN HUMAN AND VECTOR STATES  

S = susceptible, A = asymptomatic, T = treated, D = clinical disease, U = submicroscopic infection, Sm = 
Susceptible mosquitoes, Em = exposed mosquitoes, Im = infectious mosquitoes. The arrows shown 
transitions between compartments and the circle represents treatment. Red compartments indicate 
states that can expose susceptible mosquitoes to infection and yellow the mosquito compartments. 
The life-cycle of the pre-adult life-stages of the mosquito are omitted for simplicity though see (White 
et al., 2011) for full details. 

 

https://github.com/mrc-ide/deterministic-malaria-model
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The model outlined in Figure 5 is for falciparum malaria. As both falciparum and vivax malaria are present in 
Ethiopia, an approximation of the impact on vivax malaria was generated by rerunning the falciparum model 
for regions with P. vivax assuming a vivax malaria EIP. This necessary simplification given the timescale 
enables estimates of P. vivax burden, but results should be treated with caution due to the absence of species-
specific parameterisation and the lack of a hypnozoite stage in the model structure. The model will therefore 
be more appropriate for assessing the spread of vivax malaria rather than the decline following control 
interventions as this is likely to be overly optimistic. 

There are three types of existing anti-malaria interventions assumed to be present prior to the invasion of 
An. stephensi; treatment of clinical disease, insecticide treated nets (ITNs) and indoor residual spraying (IRS). 
Treatment influences the probability of transition through compartments once infected as detailed in Figure 
6. Generally, IRS and ITNs alter transmission through two aspects: 

1. Altering vector behaviour 
a. Increasing the daily mortality rate 
b. Lengthening the time between bloodmeals 
c. Reducing the human blood index (HBI) 

2. Protecting human populations 
a. Reducing the number of infectious bites taken on protected people and unprotected 

people 

For ITNs, the impact of their use depends on which the type of ITN used, insecticide resistance in the 
mosquito, and the duration of net use, as efficacy decays over time. The framework for including the 
entomological impact of pyrethroid resistant mosquitoes as described by the discriminating dose bioassay 
follows methods derived by (Churcher et al., 2016) but updated in December 2020. IRS accounts for similar 
characteristics, with the additional consideration of the anthropophily, the propensity for the vector to 
associate with areas of human habitation (and so be rest on treated surfaces) as a modifier for mortality. 
Full details can be found elsewhere (Sherrard-Smith et al., 2018). 

We assume a 3-year mass distribution of ITNs. IRS is conducted annually with a long-lasting product which 
the local mosquito population is fully susceptible to. The efficacy of ITNs and IRS decay over the product 
lifespan of 3 and 1 years respectively. Widespread usage of larval control is assumed to be constant and at 
a level to reduce adult emergence by the coverage stated. 

1.7 MODELLING FRAMEWORK 
Initially the mechanistic model is fit to malaria incidence data in Djibouti using 200 draws of Latin 
Hypercube Sampling of vector bionomics and EIP derived from Djibouti temperature data. In order to fit 
to the data, the vector density is varied – producing estimates of the required vector density increase to 
reach the incidence observed. From these fits, we discard LHC combinations that are biologically 
implausible, or unable to be fit adequately to the data and take the 50 best fitting draws of the LHC. We 
then re-assess the remaining draws and confirm they continue to represent the range and non-correlation 
of the original draws. 

The 2.5, 50 and 97.5th quantiles of these fit vector densities are then applied to the 64 combinations of 
previous interventions, EIP and prevalence for the MAP data and the 43 for the NMEP data, for a total of 
192 and runs respectively. These combinations of previous interventions, EIP and prevalence are then used 
to calibrate the model, so that starting conditions pre-stephensi accurately replicate the current malaria 
context and environment. These are then run for each of the 50 draws of the Latin Hypercube for a total 
of 9600 for each falciparum and vivax MAP runs, and 6450 for the NMEP runs to produce predictions of 
changing malaria transmission. 

From this, different combinations of coverage of ITN/IRS/larvicide are run to produce estimates of how 
these changes in malaria will occur in the presence of additional interventions. Individual model runs are 
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calibrated to the expected number of malaria cases pre-introduction of An. stephensi in order to replicate 
current conditions. 

FIGURE 7. THE MODELLING FRAMEWORK USED FOR THE ANALYSIS. 

 

1.8 COMBINING MODEL PREDICTIONS 
In order to utilise all available data sources (MAP and NMEP) in our predictions of the impact of 
interventions, we have taken the median of the MAP (falciparum + vivax) and NMEP predictions for each 
intervention combination. By doing so we hope to compensate for some of the intrinsic surveillance or 
data assumption issues that are found in either dataset.  
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2. ADDITIONAL RESULTS 

2.1 PARAMETER RANGES SAMPLED IN THE LATIN 

HYPERCUBE SAMPLING AND FITTING TO DJIBOUTI 

MALARIA INCIDENCE DATA 
In order to account for the substantial uncertainty around vector bionomics, we used LHS of vector 
bionomics in order to parameterise the vector component of the model (Figure 8A). Due to the wide array 
of parameters sampled, and that some of these will over- or underestimate incidence, we find large estimates 
vary substantially across parameterisations. However, the median predicted incidence closely follows the 
MAP estimates the model is fit to. 

FIGURE 8. PARAMETER RANGES SAMPLED USING LHS AND MODEL FITS TO DJIBOUTI  
INCIDENCE DATA 

A) Boxplots of mosquito bionomics sampled. 1 = Daily mortality, 2 = Anthropophagy, 3 = Endophily, 4 
= Bites taken indoors, 5 = Bites taken in bed. B) Model fit to Djibouti incidence provided by the Malaria 
Atlas Project. Red line, and shaded area shows median MAP estimates and confidence intervals around 
these. The blue line and the shaded area depict the median and 50% credible intervals of model 
predicted incidence. 

 

2.2 IMPACT OF ANOPHELES STEPHENSI UNDER DIFFERENT 

ASSUMPTIONS OF POPULATIONS EXPOSED 
Here we have varied where An. stephensi is predicted to increase based on pre-existing estimates of regional 
suitability for An. stephensi as estimated using the geostatistical models of (Sinka et al., 2020). This particularly 
highlights urban areas, though many people reside in these regions meaning the epidemiological impact 
could be substantial (Figure 9). Another method of generating alternative metrics of the population suitable 
for ongoing malaria transmission is to only include communities under 2000m, as estimate of an altitude 
above which malaria transmission is less suitable. This assumption means that a much wider geographical 
region is suitable but excludes some large cities so the population at risk is substantially lower (Table 3). If 
An. stephensi is confined to areas previously demarked as suitable then we project an additional ~0.7-0.9 
million malaria cases a year with a plausible range of (0.19–3.6) million cases, or a 26-120% (7–500%) 
increase in cases per year. This compared to ~4.3-5.3 (1.1–22.2) million if the whole country is equally 
suitable, 165-744% (42-3117%), and ~2.5-3.1 (0.7-12.7) million, 96-435% (26–1784%) if we only consider 
areas under 2000m.  
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The combination of these estimates leads to ~0.50-0.62 (0.14–2.4) million cases (Figure 9 and Table 3), a 
19-87% increase (95% CI 5-338%). Estimates vary substantially according to the assumed malaria burden, 
be it NMEP or MAP. Both are presented for completeness in Figure 9 and Table 3. 

FIGURE 9. SENSITIVITY ANALYSES GIVEN UNCERTAINTY OF THE RANGE OF ENVIRONMENTS 
SUITABLE FOR AN. STEPHENSI MALARIA TRANSMISSION AND DIFFERENT SOURCES OF DATA FOR 

PARAMETERISATION  

A) Comparison of different population denominators on the estimates of increases to malaria incidence, 
B) Ethiopian areas over/under 2000m and C) Sinka et al., (2020) estimates of suitability normalised to 
a 0-1 scale, the cut-off assumed was 0.5. Coloured points in panel A, indicate the calculated annual 
incidence increase for individual LHC runs. 

 
 

 

 

 

 

 

 

 

 

TABLE 3. POPULATIONS AND INCREASE IN ANNUAL INCIDENCE FROM PRE-STEPHENSI TO AFTER 
ESTABLISHMENT FOR DIFFERENT SCENARIOS AND BY DATA SOURCES 

Cases prior to the invasion of An. stephensi were assumed to be 2,614,852 (MAP) and 712,021 (NMEP) 
per year all species combined. MAP estimates are divided into estimates of falciparum and vivax malaria 
whilst NMEP estimates are combined. 

Population Type Population 
Size 

Malaria Data 
Source 

Increase In Annual 
Incidence (95% Ci) 

Increase In Annual 
Incidence All Malaria 

(95% Ci) 
Total Population 114,139,000 MAP 

falciparum 
4,352,000 (1,434,000-

15,170,000) 
Total Population 114,139,000 MAP vivax 955,000 (307,000-

3,348,000) 
5,307,000 (1,741,000-

18,518,000) 
Total Population 114,139,000 NMEP 4,328,000 (1,151,000-

22,185,000) 
Population Under 2000m 63,564,000 MAP 

falciparum 
2,572,000 (913,000-

8,474,000) 
Population Under 2000m 63,564,000 MAP vivax 563,000 (188,000-

1,968,000) 
3,135,000 (1,101,000-

10,442,000) 
Population Under 2000m 63,564,000 NMEP 2,529,000 (711,000-

12,730,000) 

Sinka Suitable Population 18,757,000 
MAP 

falciparum 
737,000 (239,000-

2,548,000) 

Sinka Suitable Population 18,757,000 MAP vivax 158,000 (52,000-563,000) 
895,000 (291,000-

3,111,000) 

Sinka Suitable Population 18,757,000 NMEP 
729,000 (193,000-

3,634,000) 
Sinka Suitable Population Under 
2000m 12,410,000 

MAP 
falciparum 

515,000 (181,000-
1,692,000) 

Sinka Suitable Population Under 
2000m 12,410,000 MAP vivax 109,000 (38,000-384,000) 

624,000 (219,000-
2,076,000) 

Sinka Suitable Population Under 
2000m 12,410,000 NMEP 

504,000 (140,000-
2,406,000) 
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2.3 POTENTIAL INTERVENTION COMBINATIONS 
In the absence of any scaleup of interventions, proportionally, areas without current transmission or 
interventions may see the largest increases in incidence, with corresponding high levels of uncertainty 
(Figure 10A). In absolute terms, it is areas with intermediate levels of transmission (for example, ~5%) and 
interventions that see the most additional malaria cases (Figure 10B). 

In areas without high levels of pre-existing interventions, scaling up a single control measure may lead to 
relatively minor decreases in incidence following establishment. However, in areas where existing 
interventions are already at an intermediate level of transmission and higher coverage, a single intervention 
has minimal effect, and combinations of interventions are required in order to mitigate impact.  At higher 
levels of transmission and intervention, though due to the non-linear relationship of prevalence and vector 
density, additional invading vectors have a relatively minimal increase to transmission, and already high 
levels of interventions mean that the effects are not as dramatic as in intermediate settings. The largest 
decreases in incidence across prevalence and intervention are seen by combining all three modelled 
interventions. Care should be taken interpreting these findings as the effectiveness of existing control 
interventions on the invading vector are unknown. 

FIGURE 10. THE EFFECT OF CONTROL MEASURES ON MITIGATING THE IMPACT OF AN. STEPHENSI 
INTRODUCTION FOR DIFFERENT REGIONS  

A) The relationship of An. stephensi introduction and incidence in three locations, with low (~0.1%), 
medium (~5%) and high prevalence (~25%), with the impact of control measures. The solid line indicates 
the median value, dark coloured shapes show the 50% CIs and light the 95% CIs, plot is cropped to 
50% CIs for ease of interpretation, black line shows the no intervention scenario. Year 0 refers to the 
introduction of An. stephensi, which occurs between the dashed lines and is fully established by year 
3. B) The median increase in malaria incidence per 100,000 comparing before and after scenarios for 
each of the locations across a range of intervention combinations. The increase here refers to the 
difference in the median incidence of the 3 years prior to the introduction of An. stephensi, and the 
median incidence across years 6 to 9 after the introduction and establishment of An. stephensi. We 
assume pre-existing interventions (Table 4) and scale up of ITN/IRS to a minimum of 80% (if prior 
coverage was higher, this is maintained) and a reduction in the emergence of adult mosquitoes by 40% 
for larviciding. 
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2.4 ADDITIONAL IMPACT OF PBO-PYRETHROID ITN 
In the presence of significant levels of pyrethroid resistance, the utilisation of PBO-pyrethroid ITNs over 
standard pyrethroid ITNs can offer an additional reduction in An. stephensi malaria transmission (Figure 11). 

At low levels of resistance, and low levels of ITN coverage, there is minimal effect of resistance. However, 
as both coverage and resistance increase the benefits of PBO-pyrethroid nets become substantial. Given 
the current level of resistance documented among An. stephensi in Ethiopia (~57%), the scenario of 50% 
resistance is most comparable, and at 80% ITN coverage this offers an additional 1-2% reduction in 
prevalence.  In terms of annual incidence, there are substantial gains made even at lower levels of pyrethroid 
resistance, at 50% bioassay survival we estimate that the use of PBO-pyrethroid nets will reduce the annual 
increase in malaria by ~60% compared to using standard nets. 

FIGURE 11. THE POTENTIAL IMPACT OF PBO-PYRETHROID AND PYRETHROID-ONLY NETS ON AN 
EXAMPLE POPULATION OF DIFFERING ITN COVERAGE AND PYRETHROID RESISTANCE  

A) The impact of different net type coverages of ITN and resistance to pyrethroids on the prevalence 
of malaria and B) the annual incidence increase in malaria per 100,000 across different bioassay 
survival rates for net types at 60% ITN coverage. 
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2.5 ECONOMIC IMPACT OF ESTABLISHMENT, AND THE COSTS 

ASSOCIATED WITH INTERVENTION STRATEGIES 
Here, using the median malaria increase, a combination of MAP and NMEP model estimates, we estimate 
the cost of different intervention strategies and their epidemiological impacts. Different strategies are going 
to have different costs depending on the size of the population at risk. If An. stephensi invades areas of 
Ethiopia under 2000m, and previously found to be suitable for An. stephensi, (Sinka et al., 2020), the most 
intensive intervention scenario of 80% ITN/IRS coverage and 40% larvicide coverage estimated at a total 
cost of ~$70 million dollars ($38-$101 million) per year, and $142 ($78- $204) per case averted. 

For a full breakdown of interventions and costs by population targeted see Table 6. 

FIGURE 12. COSTS OF DIFFERENT VECTOR CONTROL INTERVENTIONS IN COMBINATION TO MITIGATE 
THE IMPACT OF AN. STEPHENSI INVASION 

A) The number of cases averted and the annual cost, coloured by the cost per case averted across all 
interventions considered, illustration to show range in overall costs and impacts. B) The total cases 
averted for all intervention combinations considered coloured the price per case averted. For ease of 
interpretation the median annual cases averted is used. 

 
 

  

2.6 DIFFERING VALUES OF EIP 
In our baseline scenarios we have utilised the maximum temperature in an area in order to calculate the 
EIP (max EIP). While this is an extreme scenario, given the potential seasonal nature of malaria where the 
majority of transmission can occur in a few months, we believe this is a permissible assumption. 
Furthermore, when utilising different temperature values (mean and minimum) there is only a minor effect 
on the predicted incidence (Figure 13).   
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FIGURE 13. IMPACT OF DIFFERENT EIP ASSUMPTIONS ON THE INCIDENCE PER 100,000 FOR 7 
DIFFERENT LOCATIONS WITH DIFFERENT PRE-EXISTING FALCIPARUM PREVALENCE (2-10 YEAR 

OLDS) AND INTERVENTIONS. 

 
 

  

2.6.1 RELATIONSHIP OF EIP AND INCREASES IN PREVALENCE 
Areas at higher altitude have lower values of temperature dependent EIP. Following the establishment of 
An. stephensi, there is predicted to be minimal increase in malaria prevalence in areas with high EIPs, those 
at higher altitudes, compared to those at lower altitudes, and so lower EIPs. This is because the average 
time for a mosquito to acquire Plasmodium infection and then develop infectiousness begins to eclipse the 
expected lifespan of the mosquito. In these areas even if An. stephensi was to establish, it would have a 
minimal contribution to malaria transmission. 
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FIGURE 14. RELATIONSHIP OF ABSOLUTE PREVALENCE INCREASE FOLLOWING AN. STEPHENSI 
INTRODUCTION AND EIP ACROSS DATA SOURCES  

Points are jittered on the x-axis to aid interpretation, but are integer values in the data. Line represents 
a linear regression of the relationship of increase in prevalence and EIP. 
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APPENDIX 

TABLE 4. MAP GROUPING OF ADMINISTRATIVE UNITS AND THE NUMBER OF ADMIN UNITS PER 
CATEGORY (TOTAL 650), BY P. FALCIPARUM PREVALENCE, IRS/ITN COVERAGE AND P. 
FALCIPARUM EIP WITH CORRESPONDING EIP OF P. VIVAX AND P. VIVAX PREVALENCE. 

ID 
No. 

admin 
units 

Falciparum 
prevalence (2-10 

years) 

Vivax 
prevalence 
(All ages) IRS ITN 

EIP 
falciparum 

EIP 
vivax 

1 1 0 0 0 0.4 14 9 

2 11 0 0 0 0.4 13 10 

3 2 0 0 0 0 12 10 

4 22 0 0 0 0.4 12 9 

5 4 0 0 0 0 11 9 

6 28 0 0 0 0.4 11 9 

7 1 0 0.01 0.4 0.2 10 8 

8 26 0 0.01 0 0.4 10 8 

9 3 0 0.01 0.4 0.2 9 7 

10 31 0 0.01 0 0.4 9 8 

11 1 0 0.01 0.4 0.2 8 7 

12 15 0 0.01 0 0.4 8 7 

13 1 0 0.01 0 0.8 8 7 

14 1 0 0 0 0.4 7 6 

15 3 0 0.01 0 0.6 7 6 

16 2 0.01 0 0 0.4 13 10 

17 3 0.01 0 0 0.4 12 9 

18 11 0.01 0 0 0.4 11 9 

19 3 0.01 0.01 0.4 0.2 10 8 

20 50 0.01 0.01 0 0.4 10 8 

21 5 0.01 0.01 0.4 0.2 9 7 

22 68 0.01 0.01 0 0.4 9 8 

23 2 0.01 0.01 0 0.8 9 7 

24 2 0.01 0.01 0 0 8 7 

25 11 0.01 0.01 0.4 0.2 8 7 

26 117 0.01 0.01 0 0.4 8 7 

27 3 0.01 0.01 0.4 0.6 8 7 

28 13 0.01 0.01 0 0.8 8 7 

29 3 0.01 0.01 0.4 0.2 7 6 

30 4 0.01 0.01 0 0.4 7 6 

31 2 0.01 0.01 0.6 0.4 7 6 

32 19 0.01 0.01 0 0.6 7 6 

33 1 0.01 0.01 0.2 0.6 7 6 

34 8 0.01 0.01 0.4 0.6 7 6 

35 12 0.01 0.01 0 0.8 7 6 



 

23 

ID 
No. 

admin 
units 

Falciparum 
prevalence (2-10 

years) 

Vivax 
prevalence 
(All ages) IRS ITN 

EIP 
falciparum 

EIP 
vivax 

36 6 0.05 0 0 0.4 11 9 

37 2 0.05 0.01 0 0.4 10 8 

38 1 0.05 0.01 0.4 0.2 9 7 

39 28 0.05 0.01 0 0.4 9 7 

40 1 0.05 0.01 0.4 0.2 8 7 

41 59 0.05 0.01 0 0.4 8 7 

42 2 0.05 0.01 0 0.6 8 7 

43 6 0.05 0.01 0.4 0.6 8 7 

44 4 0.05 0.01 0 0.8 8 7 

45 2 0.05 0.01 0.2 0.8 8 7 

46 5 0.05 0.01 0.4 0.2 7 6 

47 3 0.05 0.01 0 0.4 7 6 

48 1 0.05 0.01 0.6 0.4 7 6 

49 2 0.05 0.01 0 0.6 7 6 

50 8 0.05 0.01 0.4 0.6 7 6 

51 16 0.05 0.01 0 0.8 7 6 

52 7 0.05 0.01 0.4 0.8 7 6 

53 4 0.05 0.01 0.6 0.8 7 6 

54 1 0.1 0.01 0 0.4 11 8 

55 2 0.1 0.01 0 0.4 10 8 

56 6 0.1 0.01 0 0.4 9 7 

57 21 0.1 0.01 0 0.4 8 7 

58 1 0.1 0.01 0 0.8 8 7 

59 1 0.1 0.01 0 0.4 7 6 

60 4 0.1 0.01 0 0.8 7 6 

61 1 0.15 0.01 0 0.4 10 8 

62 1 0.15 0.01 0 0.4 9 7 

63 4 0.15 0.01 0 0.4 8 7 

64 2 0.2 0.01 0 0.4 8 7 

 

TABLE 5. NMEP GROUPING OF ADMINISTRATIVE UNITS AND THE NUMBER OF ADMIN UNITS PER 
CATEGORY (TOTAL 650), BY INCIDENCE, IRS/ITN COVERAGE AND EIP. 

ID No. admin units Malaria incidence IRS ITN EIP 
1 4 0.0003 0 0 11 

2 41 0.0003 0 0.4 10 

3 2 0.0003 0 0 12 

4 20 0.0003 0 0.4 11 

5 24 0.025 0 0.6 7 

6 2 0.025 0 0.6 8 

7 4 0.025 0.4 0.6 7 

8 1 0.025 0.4 0.6 8 

9 1 0.025 0.2 0.6 7 
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ID No. admin units Malaria incidence IRS ITN EIP 
10 35 0.01 0 0.4 9 

11 20 0.01 0 0.4 10 

12 47 0.01 0 0.4 8 

13 4 0.01 0 0.4 7 

14 18 0.01 0 0.4 11 

15 1 0.01 0 0.4 13 

16 1 0.01 0 0.4 12 

17 3 0.01 0.6 0.4 7 

18 12 0.04 0.4 0.6 7 

19 8 0.04 0.4 0.6 8 

20 2 0.0003 0 0 8 

21 7 0.04 0.4 0.8 7 

22 2 0.04 0.2 0.8 8 

23 4 0.04 0.6 0.8 7 

24 66 0.0003 0 0.4 9 

25 10 0.0003 0 0.4 13 

26 16 0.0003 0 0.4 12 

27 109 0.0003 0 0.4 8 

28 1 0.0003 0 0.4 14 

29 2 0.0003 0 0.4 7 

30 32 0.005 0 0.8 7 

31 19 0.005 0 0.8 8 

32 2 0.005 0 0.8 9 

33 62 0.005 0 0.4 8 

34 33 0.005 0 0.4 9 

35 3 0.005 0 0.4 7 

36 20 0.005 0 0.4 10 

37 8 0.005 0 0.4 11 

38 8 0.005 0 0.4 12 

39 2 0.005 0 0.4 13 

40 9 0.0003 0.4 0.2 9 

41 13 0.0003 0.4 0.2 8 

42 4 0.0003 0.4 0.2 10 

43 8 0.0003 0.4 0.2 7 
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TABLE 6. DIFFERENT INTERVENTION BREAKDOWNS BY POPULATION SCENARIO, THE POPULATION NUMBER TARGETED, THE MEDIAN CASES AVERTED AND THE 
TOTAL COST AND COST PER CASE. 

Intervention Scenario 
Population Targeted 

(ITN/IRS/Reduction) 

Median 
Cases 

Averted Total Cost ($) 
Cost Per Case 

Averted ($) 
ITN 0%/IRS 0%/LARVICIDE 0% Total 0/0/0 0 0 (0-0) 0 (0-0) 

ITN 0%/IRS 0%/LARVICIDE 0% Under 2000m 0/0/0 0 0 (0-0) 0 (0-0) 

ITN 0%/IRS 0%/LARVICIDE 0% Sinka 0/0/0 0 0 (0-0) 0 (0-0) 

ITN 0%/IRS 0%/LARVICIDE 0% Sinka under 2000m 0/0/0 0 0 (0-0) NaN (NaN-
NaN) 

ITN 0%/IRS 0%/LARVICIDE 20% Total 0/0/22,828,000 692,000 45,656,000 (22,828,000-68,484,000) 8 (4-12) 

ITN 0%/IRS 0%/LARVICIDE 20% Under 2000m 0/0/12,713,000 382,000 7,503,000 (3,751,000-11,254,000) 2 (1-3) 

ITN 0%/IRS 0%/LARVICIDE 20% Sinka 0/0/3,751,000 118,000 25,426,000 (12,713,000-38,138,000) 74 (37-110) 

ITN 0%/IRS 0%/LARVICIDE 20% Sinka under 2000m 0/0/2,482,000 75,000 4,964,000 (2,482,000-7,446,000) 66 (33-99) 

ITN 0%/IRS 0%/LARVICIDE 40% Total 0/0/45,656,000 1,358,000 91,312,000 (45,656,000-136,967,000) 16 (8-24) 

ITN 0%/IRS 0%/LARVICIDE 40% Under 2000m 0/0/25,426,000 758,000 15,006,000 (7,503,000-22,509,000) 5 (2-7) 

ITN 0%/IRS 0%/LARVICIDE 40% Sinka 0/0/7,503,000 234,000 50,851,000 (25,426,000-76,277,000) 121 (60-181) 

ITN 0%/IRS 0%/LARVICIDE 40% Sinka under 2000m 0/0/4,964,000 150,000 9,928,000 (4,964,000-14,892,000) 66 (33-99) 

ITN 0%/IRS 40%/LARVICIDE 0% Total 0/42,021,000/0 1,457,000 260,107,000 (140,769,000-373,983,000) 46 (25-66) 

ITN 0%/IRS 40%/LARVICIDE 0% Under 2000m 0/23,077,000/0 876,000 41,363,000 (22,385,000-59,471,000) 12 (7-18) 

ITN 0%/IRS 40%/LARVICIDE 0% Sinka 0/6,682,000/0 253,000 142,846,000 (77,307,000-205,384,000) 316 (171-454) 

ITN 0%/IRS 40%/LARVICIDE 0% Sinka under 2000m 0/4,497,000/0 182,000 27,836,000 (15,065,000-40,023,000) 153 (83-219) 

ITN 0%/IRS 40%/LARVICIDE 20% Total 0/42,021,000/22,828,000 2,008,000 305,763,000 (163,597,000-442,467,000) 54 (29-78) 

ITN 0%/IRS 40%/LARVICIDE 20% Under 2000m 0/23,077,000/12,713,000 1,183,000 48,865,000 (26,137,000-70,725,000) 14 (8-21) 

ITN 0%/IRS 40%/LARVICIDE 20% Sinka 0/6,682,000/3,751,000 344,000 168,271,000 (90,020,000-243,522,000) 329 (176-476) 

ITN 0%/IRS 40%/LARVICIDE 20% Sinka under 2000m 0/4,497,000/2,482,000 242,000 32,800,000 (17,547,000-47,469,000) 136 (73-196) 

ITN 0%/IRS 40%/LARVICIDE 40% Total 0/42,021,000/45,656,000 2,505,000 351,419,000 (186,425,000-510,950,000) 61 (32-89) 

ITN 0%/IRS 40%/LARVICIDE 40% Under 2000m 0/23,077,000/25,426,000 1,468,000 56,368,000 (29,888,000-81,980,000) 16 (9-24) 

ITN 0%/IRS 40%/LARVICIDE 40% Sinka 0/6,682,000/7,503,000 431,000 193,697,000 (102,733,000-281,660,000) 340 (181-495) 

ITN 0%/IRS 40%/LARVICIDE 40% Sinka under 2000m 0/4,497,000/4,964,000 299,000 37,764,000 (20,029,000-54,915,000) 126 (67-184) 
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Intervention Scenario 
Population Targeted 

(ITN/IRS/Reduction) 

Median 
Cases 

Averted Total Cost ($) 
Cost Per Case 

Averted ($) 
ITN 0%/IRS 80%/LARVICIDE 0% Total 0/87,563,000/0 2,839,000 542,015,000 (293,336,000-779,311,000) 94 (51-135) 

ITN 0%/IRS 80%/LARVICIDE 0% Under 2000m 0/48,389,000/0 1,704,000 87,799,000 (47,516,000-126,238,000) 25 (14-36) 

ITN 0%/IRS 80%/LARVICIDE 0% Sinka 0/14,184,000/0 483,000 299,529,000 (162,104,000-430,664,000) 489 (265-703) 

ITN 0%/IRS 80%/LARVICIDE 0% Sinka under 2000m 0/9,460,000/0 343,000 58,557,000 (31,691,000-84,194,000) 171 (92-246) 

ITN 0%/IRS 80%/LARVICIDE 20% Total 0/87,563,000/22,828,000 3,208,000 587,671,000 (316,164,000-847,795,000) 101 (54-145) 

ITN 0%/IRS 80%/LARVICIDE 20% Under 2000m 0/48,389,000/12,713,000 1,910,000 95,302,000 (51,268,000-137,492,000) 27 (14-39) 

ITN 0%/IRS 80%/LARVICIDE 20% Sinka 0/14,184,000/3,751,000 547,000 324,955,000 (174,817,000-468,802,000) 497 (267-717) 

ITN 0%/IRS 80%/LARVICIDE 20% Sinka under 2000m 0/9,460,000/2,482,000 384,000 63,521,000 (34,173,000-91,640,000) 165 (89-239) 

ITN 0%/IRS 80%/LARVICIDE 40% Total 0/87,563,000/45,656,000 3,602,000 633,327,000 (338,992,000-916,279,000) 108 (58-156) 

ITN 0%/IRS 80%/LARVICIDE 40% Under 2000m 0/48,389,000/25,426,000 2,147,000 102,805,000 (55,019,000-148,746,000) 29 (15-41) 

ITN 0%/IRS 80%/LARVICIDE 40% Sinka 0/14,184,000/7,503,000 615,000 350,380,000 (187,529,000-506,941,000) 499 (267-723) 

ITN 0%/IRS 80%/LARVICIDE 40% Sinka under 2000m 0/9,460,000/4,964,000 431,000 68,485,000 (36,655,000-99,086,000) 159 (85-230) 

ITN 40%/IRS 0%/LARVICIDE 0% Total 2,362,000/0/0 98,000 1,076,000 (1,023,000-1,150,000) 0 (0-0) 

ITN 40%/IRS 0%/LARVICIDE 0% Under 2000m 898,000/0/0 51,000 543,000 (517,000-581,000) 0 (0-0) 

ITN 40%/IRS 0%/LARVICIDE 0% Sinka 1,193,000/0/0 31,000 409,000 (389,000-437,000) 1 (1-2) 

ITN 40%/IRS 0%/LARVICIDE 0% Sinka under 2000m 307,000/0/0 13,000 140,000 (133,000-150,000) 11 (10-12) 

ITN 40%/IRS 0%/LARVICIDE 20% Total 2,362,000/0/22,828,000 780,000 46,732,000 (23,851,000-69,634,000) 8 (4-13) 

ITN 40%/IRS 0%/LARVICIDE 20% Under 2000m 898,000/0/12,713,000 429,000 8,046,000 (4,268,000-11,835,000) 2 (1-4) 

ITN 40%/IRS 0%/LARVICIDE 20% Sinka 1,193,000/0/3,751,000 145,000 25,834,000 (13,102,000-38,575,000) 72 (37-108) 

ITN 40%/IRS 0%/LARVICIDE 20% Sinka under 2000m 307,000/0/2,482,000 87,000 5,104,000 (2,615,000-7,596,000) 59 (30-87) 

ITN 40%/IRS 0%/LARVICIDE 40% Total 2,362,000/0/45,656,000 1,432,000 92,387,000 (46,679,000-138,118,000) 16 (8-25) 

ITN 40%/IRS 0%/LARVICIDE 40% Under 2000m 898,000/0/25,426,000 799,000 15,549,000 (8,020,000-23,090,000) 5 (2-7) 

ITN 40%/IRS 0%/LARVICIDE 40% Sinka 1,193,000/0/7,503,000 254,000 51,260,000 (25,815,000-76,714,000) 119 (60-178) 

ITN 40%/IRS 0%/LARVICIDE 40% Sinka under 2000m 307,000/0/4,964,000 160,000 10,068,000 (5,097,000-15,042,000) 63 (32-94) 

ITN 40%/IRS 40%/LARVICIDE 0% Total 2,362,000/42,021,000/0 1,505,000 261,183,000 (141,792,000-375,133,000) 46 (25-67) 

ITN 40%/IRS 40%/LARVICIDE 0% Under 2000m 898,000/23,077,000/0 896,000 41,906,000 (22,902,000-60,052,000) 12 (7-18) 

ITN 40%/IRS 40%/LARVICIDE 0% Sinka 1,193,000/6,682,000/0 272,000 143,254,000 (77,696,000-205,821,000) 313 (170-450) 
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Intervention Scenario 
Population Targeted 

(ITN/IRS/Reduction) 

Median 
Cases 

Averted Total Cost ($) 
Cost Per Case 

Averted ($) 
ITN 40%/IRS 40%/LARVICIDE 0% Sinka under 2000m 307,000/4,497,000/0 187,000 27,976,000 (15,198,000-40,172,000) 149 (81-215) 

ITN 40%/IRS 40%/LARVICIDE 20% Total 2,362,000/42,021,000/22,828,000 2,052,000 306,839,000 (164,654,000-443,568,000) 54 (29-78) 

ITN 40%/IRS 40%/LARVICIDE 20% Under 2000m 898,000/23,077,000/12,713,000 1,202,000 49,409,000 (26,671,000-71,282,000) 14 (8-21) 

ITN 40%/IRS 40%/LARVICIDE 20% Sinka 1,193,000/6,682,000/3,751,000 361,000 168,680,000 (90,422,000-243,941,000) 327 (175-473) 

ITN 40%/IRS 40%/LARVICIDE 20% Sinka under 2000m 307,000/4,497,000/2,482,000 246,000 32,940,000 (17,684,000-47,612,000) 134 (72-194) 

ITN 40%/IRS 40%/LARVICIDE 40% Total 2,362,000/42,021,000/45,656,000 2,542,000 352,495,000 (187,482,000-512,052,000) 61 (33-89) 

ITN 40%/IRS 40%/LARVICIDE 40% Under 2000m 898,000/23,077,000/25,426,000 1,485,000 56,912,000 (30,422,000-82,536,000) 16 (9-24) 

ITN 40%/IRS 40%/LARVICIDE 40% Sinka 1,193,000/6,682,000/7,503,000 444,000 194,106,000 (103,135,000-282,079,000) 339 (180-493) 

ITN 40%/IRS 40%/LARVICIDE 40% Sinka under 2000m 307,000/4,497,000/4,964,000 302,000 37,904,000 (20,166,000-55,058,000) 125 (67-182) 

ITN 40%/IRS 80%/LARVICIDE 0% Total 2,362,000/87,563,000/0 2,886,000 543,091,000 (294,360,000-780,461,000) 94 (51-135) 

ITN 40%/IRS 80%/LARVICIDE 0% Under 2000m 898,000/48,389,000/0 1,728,000 88,343,000 (48,033,000-126,819,000) 25 (14-36) 

ITN 40%/IRS 80%/LARVICIDE 0% Sinka 1,193,000/14,184,000/0 499,000 299,938,000 (162,493,000-431,101,000) 485 (263-698) 

ITN 40%/IRS 80%/LARVICIDE 0% Sinka under 2000m 307,000/9,460,000/0 348,000 58,697,000 (31,824,000-84,343,000) 169 (91-242) 

ITN 40%/IRS 80%/LARVICIDE 20% Total 2,362,000/87,563,000/22,828,000 3,250,000 588,747,000 (317,222,000-848,897,000) 101 (54-145) 

ITN 40%/IRS 80%/LARVICIDE 20% Under 2000m 898,000/48,389,000/12,713,000 1,931,000 95,845,000 (51,802,000-138,049,000) 27 (15-39) 

ITN 40%/IRS 80%/LARVICIDE 20% Sinka 1,193,000/14,184,000/3,751,000 560,000 325,364,000 (175,219,000-469,221,000) 494 (266-712) 

ITN 40%/IRS 80%/LARVICIDE 20% Sinka under 2000m 307,000/9,460,000/2,482,000 389,000 63,661,000 (34,310,000-91,783,000) 164 (88-236) 

ITN 40%/IRS 80%/LARVICIDE 40% Total 2,362,000/87,563,000/45,656,000 3,638,000 634,403,000 (340,050,000-917,380,000) 108 (58-156) 

ITN 40%/IRS 80%/LARVICIDE 40% Under 2000m 898,000/48,389,000/25,426,000 2,166,000 103,348,000 (55,553,000-149,303,000) 29 (15-41) 

ITN 40%/IRS 80%/LARVICIDE 40% Sinka 1,193,000/14,184,000/7,503,000 626,000 350,789,000 (187,931,000-507,359,000) 497 (266-719) 

ITN 40%/IRS 80%/LARVICIDE 40% Sinka under 2000m 307,000/9,460,000/4,964,000 435,000 68,625,000 (36,792,000-99,229,000) 158 (84-228) 

ITN 80%/IRS 0%/LARVICIDE 0% Total 44,344,000/0/0 1,717,000 20,201,000 (19,216,000-21,597,000) 4 (3-4) 

ITN 80%/IRS 0%/LARVICIDE 0% Under 2000m 22,671,000/0/0 926,000 3,368,000 (3,203,000-3,600,000) 1 (1-1) 

ITN 80%/IRS 0%/LARVICIDE 0% Sinka 7,392,000/0/0 265,000 10,328,000 (9,824,000-11,042,000) 24 (23-26) 

ITN 80%/IRS 0%/LARVICIDE 0% Sinka under 2000m 3,970,000/0/0 158,000 1,809,000 (1,720,000-1,934,000) 11 (11-12) 

ITN 80%/IRS 0%/LARVICIDE 20% Total 44,344,000/0/22,828,000 2,299,000 65,857,000 (42,044,000-90,081,000) 12 (7-16) 

ITN 80%/IRS 0%/LARVICIDE 20% Under 2000m 22,671,000/0/12,713,000 1,261,000 10,871,000 (6,955,000-14,855,000) 3 (2-4) 
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Intervention Scenario 
Population Targeted 

(ITN/IRS/Reduction) 

Median 
Cases 

Averted Total Cost ($) 
Cost Per Case 

Averted ($) 
ITN 80%/IRS 0%/LARVICIDE 20% Sinka 7,392,000/0/3,751,000 364,000 35,754,000 (22,537,000-49,180,000) 72 (45-99) 

ITN 80%/IRS 0%/LARVICIDE 20% Sinka under 2000m 3,970,000/0/2,482,000 226,000 6,773,000 (4,202,000-9,380,000) 30 (19-41) 

ITN 80%/IRS 0%/LARVICIDE 40% Total 44,344,000/0/45,656,000 2,910,000 111,513,000 (64,872,000-158,564,000) 19 (11-28) 

ITN 80%/IRS 0%/LARVICIDE 40% Under 2000m 22,671,000/0/25,426,000 1,626,000 18,373,000 (10,706,000-26,109,000) 5 (3-8) 

ITN 80%/IRS 0%/LARVICIDE 40% Sinka 7,392,000/0/7,503,000 467,000 61,179,000 (35,250,000-87,318,000) 108 (62-154) 

ITN 80%/IRS 0%/LARVICIDE 40% Sinka under 2000m 3,970,000/0/4,964,000 298,000 11,737,000 (6,684,000-16,826,000) 39 (22-56) 

ITN 80%/IRS 40%/LARVICIDE 0% Total 44,344,000/42,021,000/0 2,670,000 280,308,000 (159,985,000-395,580,000) 49 (28-69) 

ITN 80%/IRS 40%/LARVICIDE 0% Under 2000m 22,671,000/23,077,000/0 1,532,000 44,730,000 (25,589,000-63,072,000) 13 (7-18) 

ITN 80%/IRS 40%/LARVICIDE 0% Sinka 7,392,000/6,682,000/0 442,000 153,174,000 (87,132,000-216,426,000) 272 (155-384) 

ITN 80%/IRS 40%/LARVICIDE 0% Sinka under 2000m 3,970,000/4,497,000/0 293,000 29,645,000 (16,785,000-41,956,000) 101 (57-143) 

ITN 80%/IRS 40%/LARVICIDE 20% Total 44,344,000/42,021,000/22,828,000 3,125,000 325,964,000 (183,453,000-463,156,000) 56 (32-80) 

ITN 80%/IRS 40%/LARVICIDE 20% Under 2000m 22,671,000/23,077,000/12,713,000 1,798,000 52,233,000 (29,447,000-74,175,000) 15 (8-21) 

ITN 80%/IRS 40%/LARVICIDE 20% Sinka 7,392,000/6,682,000/3,751,000 517,000 178,599,000 (100,172,000-254,100,000) 290 (163-413) 

ITN 80%/IRS 40%/LARVICIDE 20% Sinka under 2000m 3,970,000/4,497,000/2,482,000 346,000 34,609,000 (19,324,000-49,321,000) 100 (56-143) 

ITN 80%/IRS 40%/LARVICIDE 40% Total 44,344,000/42,021,000/45,656,000 3,578,000 371,620,000 (206,281,000-531,640,000) 64 (35-91) 

ITN 80%/IRS 40%/LARVICIDE 40% Under 2000m 22,671,000/23,077,000/25,426,000 2,074,000 59,736,000 (33,198,000-85,429,000) 17 (9-24) 

ITN 80%/IRS 40%/LARVICIDE 40% Sinka 7,392,000/6,682,000/7,503,000 594,000 204,025,000 (112,885,000-292,238,000) 304 (168-436) 

ITN 80%/IRS 40%/LARVICIDE 40% Sinka under 2000m 3,970,000/4,497,000/4,964,000 400,000 39,573,000 (21,806,000-56,767,000) 99 (54-142) 

ITN 80%/IRS 80%/LARVICIDE 0% Total 44,344,000/87,563,000/0 3,594,000 562,217,000 (312,552,000-800,908,000) 96 (53-137) 

ITN 80%/IRS 80%/LARVICIDE 0% Under 2000m 22,671,000/48,389,000/0 2,120,000 91,167,000 (50,720,000-129,838,000) 25 (14-36) 

ITN 80%/IRS 80%/LARVICIDE 0% Sinka 7,392,000/14,184,000/0 601,000 309,857,000 (171,928,000-441,706,000) 453 (251-646) 

ITN 80%/IRS 80%/LARVICIDE 0% Sinka under 2000m 3,970,000/9,460,000/0 414,000 60,366,000 (33,411,000-86,127,000) 146 (81-208) 

ITN 80%/IRS 80%/LARVICIDE 20% Total 44,344,000/87,563,000/22,828,000 3,930,000 607,872,000 (336,020,000-868,485,000) 103 (57-147) 

ITN 80%/IRS 80%/LARVICIDE 20% Under 2000m 22,671,000/48,389,000/12,713,000 2,323,000 98,670,000 (54,578,000-140,941,000) 27 (15-39) 

ITN 80%/IRS 80%/LARVICIDE 20% Sinka 7,392,000/14,184,000/3,751,000 656,000 335,283,000 (184,968,000-479,380,000) 464 (256-663) 

ITN 80%/IRS 80%/LARVICIDE 20% Sinka under 2000m 3,970,000/9,460,000/2,482,000 452,000 65,330,000 (35,951,000-93,492,000) 144 (79-207) 

ITN 80%/IRS 80%/LARVICIDE 40% Total 44,344,000/87,563,000/45,656,000 4,268,000 653,528,000 (358,848,000-936,968,000) 110 (60-158) 
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Intervention Scenario 
Population Targeted 

(ITN/IRS/Reduction) 

Median 
Cases 

Averted Total Cost ($) 
Cost Per Case 

Averted ($) 
ITN 80%/IRS 80%/LARVICIDE 40% Under 2000m 22,671,000/48,389,000/25,426,000 2,532,000 106,172,000 (58,329,000-152,195,000) 29 (16-41) 

ITN 80%/IRS 80%/LARVICIDE 40% Sinka 7,392,000/14,184,000/7,503,000 715,000 360,708,000 (197,681,000-517,519,000) 471 (258-676) 

ITN 80%/IRS 80%/LARVICIDE 40% Sinka under 2000m 3,970,000/9,460,000/4,964,000 496,000 70,294,000 (38,433,000-100,938,000) 142 (78-204) 
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