

U.S. PRESIDENT'S MALARIA INITIATIVE

USAID | StopPalu+

ANNUAL REPORT OF ENTOMOLOGICAL SURVEILLANCE ACTIVITIES (NOVEMBER 2017–OCTOBER 2018)

February 2019

This document was produced for review by the US Agency for International Development (USAID). It was made possible by the support of the American people. It was prepared by RTI International for the USAID | StopPalu+ Project.

USAID | StopPalu+

ANNUAL REPORT OF ENTOMOLOGICAL SURVEILLANCE ACTIVITIES (NOVEMBER 2017–OCTOBER 2018)

Cooperative Agreement No. 72067518CA000015 Contractual period: December 2017–December 2022

Prepared for:

USAID | Guinea US Agency for International Development Conakry, Guinea Telephone: +224.657.10.4124

Lamine Bangoura, MD (<u>lbangoura@usaid.gov</u>) Agreement Officer's Representative (AOR)

Prepared by

Aissata Fofana, MD Chief of Party USAID | StopPalu + RTI International 3040 Cornwallis Road Post Office Box 12194 Research Triangle Park, North Carolina 22709-2194

RTI International is one of the world's leading research institutes, dedicated to improving the human condition by putting in practical knowledge. Our staff of more than 3,700 provides research and technical services to governments and businesses in more than 75 countries in the areas of health and pharmaceuticals, education and training, surveys and statistics, advanced technology, international development, economic and social policy, energy and the environment, and laboratory testing and chemical analysis.

RTI International is a registered trademark and a trade name of Research Triangle Institute.

The views expressed by the authors in this report do not necessarily reflect the views of the US Agency for International Development or the US Government.

Contents

List of Figuresi	v									
List of Tablesi	v									
Abbreviations	v									
Summary	1									
1 Context	2									
2 StopPalu+ Results Framework	StopPalu+ Results Framework									
3 Achievements	5									
3.1 Objective 1: Strengthen national entomological capacity	5									
3.1.1 Supporting the functioning of the entomology laboratory and insectary at UGANC	5									
3.1.2 Maintaining the An. gambiae (Kisumu strain) colony	6									
3.1.3 Training student interns	6									
3.1.4 Support for the Vector Control Technical Working Group meetings	6									
3.2 Objective 2: Conduct entomological surveillance	7									
3.2.1 Collecting mosquitoes in selected sentinel sites	7									
3.2.2 Assessing vector distribution and abundance1	0									
3.2.3 Assessing vector seasonality1	5									
3.2.4 Assessing vector biting behavior1	8									
3.2.5 Species identification and sporozoite index2	1									
3.3 Objective 3: Determine insecticide resistance of malaria vectors	2									
3.3.1 Monitoring phenotypic resistance2	2									
3.3.2 Genotypic resistance2	5									
Annex. Laboratory Equipment, Materials, and Reagents2	6									

List of Figures

Figure 1: The prevalence of malaria in children under 5 years	2
Figure 2: UGANC entomology laboratory and insectary	5
Figure 3: Breeding An. gambiae s.s. at the UGANC insectary	6
Figure 5: Total Biting behavior An. gambiae s.l. (as determined by HLC)	18
Figure 6: Biting behavior An. gambiae s.l. (as determined by HLC, across districts)	20

List of Tables

Table 1: Senti	nel sites for entomology surveillance activities	7
Table 2: Sumr	mary of the frequency of collections and number of houses sampled in both seasonal sites for FY2018†	8
Table 3: Sumr	mary of the frequency of collections and number of houses sampled in both seasonal sites in FY2018†	9
Table 4: Mear	n abundance and distribution of mosquitoes collected indoors and outdoors using HLC over 4 nights (2 nights over 2 visits) of collection in one house per village	ر 1
Table 5: Mear	a bundance and distribution of mosquitoes collected indoors and outdoors using Light traps over 4 nights (2 nights over 2 visits) of collection in one house per village1	2
Table 6: Mear	a bundance and distribution of mosquitoes collected using the pyrethrum spray catches (indoors) over 2 nights (1 nights over 2 visits) of collection in ten houses per village	4
Table 7: Seas	sonal sum of <i>An. gambiae</i> s <i>.l.</i> and <i>An. funestus s.l.</i> collected in Boké and Faranah villages as determined using HLCs1	6
Table 8: Seas	onal sum of <i>An. gambiae s.l.</i> and <i>An. funestus s.l.</i> collected in Boké and Faranah as determined using CDC light traps1	6
Table 9: Seas	onal sum of An. gambiae s.l. and An. funestus s.l. collected in Boké and Faranah as determined using pyrethrum spray catches	7
Table 10: Tota	al An. gambiae s.I. biting behavior as determined using HLCs	9
Table 11: Dist	ribution of An. gambiae s.I. species from districts in Guinea	2
Table 12: An.	gambiae s.l. sporozoite index	2
Table 13: Sum	nmary of insecticide susceptibility testing of mosquito vectors (% mortality; 100 mosquitoes were used to test the insecticide and 25 as control group)2) 24
Table 14: Sum	nmary of insecticide intensity tests with CDC bottle bioassay (% mortality). 100 mosquitoes were used to test the insecticide and 25 as control group) 25
Table 15: Sum	nmary of <i>Kdr</i> West and <i>Ace</i> -1R frequency distribution in <i>An. gambiae</i> s.l 2	6
Table A-1:	Entomological laboratory equipment and materials 2	6
Table A-2:	Laboratory reagents	8

Abbreviations

Centers for Disease Control and Prevention
Entomology Research Center of Cotonou
Circumsporozoite Protein
Enzyme Immunosorbent Assay
Global Fund to Fight AIDS, Tuberculosis and Malaria
Government of Guinea
Human Landing Collection
Indoor Residual Spraying
Knockdown Resistance (mutation)
Long-lasting Insecticide-treated Net
Multiple Indicator Cluster Survey (on Malaria)
Ministry of Health
National Malaria Control Program
Polymerase Chain Reaction
President's Malaria Initiative
Gamal Abdel Nasser University of Conakry
United States Agency for International Development
World Health Organization

Summary

The U.S. President's Malaria Initiative (PMI) Program Component (*StopPalu+*) activities are implemented to reduce the malaria burden in Guinea.¹ These activities include building incountry capacity to carry out entomological surveys. During November 1, 2017–October 31, 2018 (the period covered by this annual report), *StopPalu+* supported the National Malaria Control Program's (NMCP's) field activities and supported the operation of the insectary and laboratory for conducting entomological investigations. The focus of *StopPalu+*'s entomological activities is to continue to support the NMCP in developing a national vector control strategy to (1) control the growth of vectors across the country, (2) identify areas affected by insecticide resistance, and (3) implement the most effective interventions.

During this second year of supporting entomological activities in Guinea, *StopPalu*+ accomplished the following:

- Continued to support the laboratory and the insectary
- Continued to support the care for two pairs of rabbits housed at the Gamal Abdel Nasser University of Conakry to support the production of mosquitoes
- Continued to support the breeding of Kisumu strain mosquitoes for multiple generations
- Continued to visit the sentinel sites in Boké, Kankan, Kissidougou, Labé, Dabola, and Faranah where mosquitoes were collected to facilitate national entomological surveillance
- Conducted monthly study of vector seasonality in Boké and Faranah

¹ StopPalu+ is the five-year follow-on project to the original StopPalu project. StopPalu+ started in December 2017 and will run through December 2022.

1 Context

Over the past five years. Guinea has made enormous progress in malaria control, leading to a reduction in malaria prevalence in children under five years of age, (Figure 1), annual malaria incidence, and in-patient deaths^{2,3,4}. Progress was such that in 2016, the Government of Guinea (GOG) received an Award of Excellence from the Alliance of African Leaders Against Malaria for the country's efforts against malaria.5 Much of this progress is due to the GOG's leadership and commitment to scale up key interventions against malaria, backed by substantial external financial support, specifically the Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM) and the U.S. President's Malaria Initiative (PMI).

Guinea's malaria efforts face several challenges, however, including major transmission heterogeneity between regions and districts (*préfectures*); a constrained malaria commodity procurement supply chain; uneven technical and program planning, implementation, and management capacity at national, regional, and district levels; and mounting insecticide resistance.⁶ These challenges invariably impact programmatic intervention coverage and effectiveness. Consequently, malaria remains the most

burdensome communicable disease in Guinea: the entire 12.1 million population is at risk, with approximately 1 million cases reported in 2016, accounting for 31% of outpatient visits.³

The main malaria vector in Guinea is *Anopheles gambiae* sensu lato (s.l.), specifically *An. gambiae* sensu stricto (s.s.), *An. coluzzii, An. arabiensis*, and *An. melas*. The *An. funestus* complex is also present, but studies published to date indicate that *An. funestus* is less prevalent than the *An. gambiae* complex ^{7,8}. Vector control interventions implemented in Guinea include the mass distribution of long-lasting insecticide-treated mosquito nets (LLINs) and, to a very limited extent, indoor residual spraying (IRS) with propoxur, deltamethrin, and pirimiphos-methyl.

² National Institute of Statistics and MEASURE DHS (2012) Demographic and Health Survey (DHS) and Multiple Indicator Cluster Survey (MICS) 2012. Conakry, Guinea, pp. 1–528.

³ National Institute of Statistics (2016) *Multiple Indicator Cluster Survey with Malaria Component (MICS-Palu) 2016.* Conakry, Guinea.

⁴ Ministry of Health (MOH) (2017) *National Strategic Plan for Malaria Control 2018–2022*. Conakry, Guinea, p. 1–69.

https://au.int/en/pressreleases/19675/african-heads-state-celebrate-progress-against-malaria-african-leaders-malaria
 MOH (2017) Performance Review of the Strategic Plan for Malaria Control 2013–2017. Conakry, Guinea, p. 1–75.

 ⁷ Vezenegho, S. B., B. D. Brooke, R. H. Hunt, M. Coetzee, and L. L. Koekemoer. "Malaria vector composition and insecticide susceptibility status in Guinea Conakry, West Africa." Medical and veterinary entomology 23, no. 4 (2009): 326-334.

⁸ Carnevale, Pierre, J. C. Toto, P. Guibert, M. Keita, and Sylvie Manguin. "Entomological survey and report of a knockdown resistance mutation in the malaria vector Anopheles gambiae from the Republic of Guinea." Transactions of the Royal Society of Tropical Medicine and Hygiene 104, no. 7 (2010): 484-489.

The resistance status of malaria vectors in Guinea was recently evaluated in six sites (Boké, Labé, Maferinyah, Faranah, Kankan, and Kissidougou).⁹ Resistance to DDT, permethrin, alpha-cypermethrin, and lambda-cyhalothrin was detected in all *An. gambiae* s.l. populations tested; populations were susceptible to deltamethrin and bendiocarb in two of the three sites sampled. The *Kdr* (knockdown resistance) West mutation was widespread, and frequency was 60% or more in all sites sampled; the *Ace-1* mutation was present in low levels. There is limited information on the insecticide resistance status in *An. funestus*, with complete susceptibility to deltamethrin and malathion (unspecified dose) reported.¹⁰

2 StopPalu+ Results Framework

PMI's main operational platform for malaria efforts from 2013 onward has been the USAID Guinea *StopPalu* project (2013–2017) and the current follow-on project *StopPalu*+ (December 2017–December 2022), both led by RTI International. *StopPalu*+'s goal is to assist the GOG to achieve the PMI target of reducing malaria-related morbidity and mortality by 75% compared with 2016 levels. This will be achieved through (1) increasing the use of LLINs by the population; (2) increasing the use of intermittent preventive treatment of malaria in pregnancy during antenatal care visits; (3) increasing prompt care-seeking and treatment; (4) increasing the number of full doses of seasonal malaria chemoprevention that are delivered in a timely manner; (5) increasing community involvement in and support for malaria prevention, care, and treatment activities; and (6) strengthening the technical capacity of the National Malaria Control Program (NMCP) to manage, implement, and monitor prevention, care, and treatment activities.

The overarching aims of entomological activities supported by *StopPalu*+ are to strengthen the country's entomological capacity and generate malaria vector data that will help the NMCP and stakeholders to develop and implement Guinea's vector control strategy.

Entomological activities supported by *StopPalu*+ have three main objectives during this second year:

Objective 1: Strengthen national entomological capacity by:

- Supporting the operation of an entomology laboratory and insectary at the Gamal Abdel Nasser University of Conakry (UGANC)
- Maintaining a colony of An. gambiae (Kisumu strain)
- Train UGANC students and the NMCP interns in maintenance techniques for the insectary
- Supporting the Vector Control Technical Working Group meetings

Objective 2: Conduct entomological surveillance by:

- Collecting mosquitoes in selected sentinel sites
- Assessing vector distribution and abundance
- Assessing vector seasonality
- Assessing vector biting behavior
- Species identification and sporozoite index

Objective 3: Determine insecticide resistance of malaria vectors by:

Carrying out susceptibility testing in sentinel sites

⁹ Keita, K. et al. (2017) Species identification and resistance status of Anopheles gambiae s.l. (Diptera: Culicidae) mosquitoes in Guinea. Journal of Medical Entomology, 54, 677–681.

¹⁰ AngloGold Ashanti (2007) Unpublished.

- Carrying out intensity tests for deltamethrin, permethrin, and alpha-cypermethrin at different doses
- Collecting semi-gravid mosquitoes for chromosomal analysis

3 Achievements

3.1 Objective 1: Strengthen national entomological capacity

Since the official opening of the entomology laboratory and insectary at UGANC, *StopPalu*+ has conducted several activities, including (1) supporting the operation of the laboratory and insectary, (2) maintaining a susceptible *An. gambiae* s.s. population (Kisumu strain); (3) holding meetings, organized by the staff, with the NMCP Vector Control Unit; and (4) training student interns.

3.1.1 Supporting the functioning of the entomology laboratory and insectary at UGANC

The laboratory and insectary were established on the UGANC grounds in November 2016 with support from Professor Martin Akogbeto (Entomology Research Center of Cotonou, Benin [CREC]); both have been fully functional ever since. Laboratory and insectary setup have been fully described in *StopPalu*'s Year 5 (fiscal year [FY] 2017) Entomological Report. The activities carried out during FY 2018 are as follows:

Laboratory

In 2016, UGANC provided physical space to *StopPalu* to establish an entomology laboratory and insectary. *StopPalu*, with PMI support, supported the rehabilitation and conversion of these buildings. The laboratory consists of two large air-conditioned and ventilated rooms equipped with shelves and large tables. The equipment and materials available are used to conduct entomological surveillance and insecticide resistance tests. The first room serves as the entomological laboratory and the second room is devoted to molecular biology and biochemistry testing.

Insectary

The insectary, managed by *StopPalu*+, is a large room divided into two compartments (compartments A and B). Compartment A is assigned as the adult breeding room. It includes two large shelves that hold approximately 20 adult holding cages. Compartment B of the insectary is

Figure 2: UGANC entomology laboratory and insectary

temperature-controlled and assigned for the breeding of mosquito larvae. The first breeding activities started with breeding the *An. gambiae* s.s. Kisumu strain of mosquitoes brought from Cotonou (Benin). An animal enclosure is annexed to the insectary and houses two pairs of rabbits used to feed adult mosquitoes.

The entomological equipment and laboratory materials are summarized in the tables in the Annex.

3.1.2 Maintaining the An. gambiae (Kisumu strain) colony

An. gambiae s.s. are being reared according to standard procedures¹¹ (*Figure 3*):

- Female mosquitoes are allowed to take a blood meal from a rabbit immobilized on a device designed for this purpose and placed at the top of the cage in which the mosquitoes are housed. Mosquitoes are fed almost seven days after emergence.
- Mosquitoes are transferred into an oviposition tub after the second feeding; egg laying happens after 24 or 48 hours.

Figure 3: Breeding *An. gambiae* s.s. at the UGANC insectary

- Eggs are transferred into labeled freshwater tanks filled with 500 ml of spring water to allow hatching.
- Hatched larvae are transferred to tanks and classified according to their stage of development; tetramin fish food is fed to mosquito larvae.
- When mosquitoes reach the nymphal stage, they are transferred to cages for emergence.
- Adults are kept in cages until they are needed for study and they are fed with a solution of water and sugar ad libitum.

During FY 2018, the insectary produced 13 generations of mosquitoes.

3.1.3 Training student interns

Similar to FY 2017, UGANC students interested in a career in entomology and the NMCP interns were trained in all mosquito breeding techniques and insectary maintenance; in FY 2018 11 interns were selected and completed the internship.

3.1.4 Support for the Vector Control Technical Working Group meetings

During FY 2018, *StopPalu*+ supported the NMCP's Vector Control Unit in organizing eight monthly

meetings. During these meetings, vector control activities for the month/quarter were reviewed and discussed, and activities for the months/quarters ahead were planned.

¹¹ Das, S., Garver, L., and Dimopoulos, G (2007) Protocol for the breeding of mosquitoes (*A. gambiae*). Journal of Visualized Experiments, 221.

3.2 Objective 2: Conduct entomological surveillance

3.2.1 Collecting mosquitoes in selected sentinel sites

Entomological surveillance activities were conducted to investigate the distribution, abundance, seasonality, behavior, rate of infection, and the status of insecticide resistance in malaria vectors in eight districts: Boké, Faranah, Labé, Lola, Kankan, Kissidougou, Maferinyah, and Siguiri. These districts were selected to represent the four main malaria endemicity zones in Guinea. In each district, three villages with the highest malaria prevalence were selected as sentinel sites (*Table 1*).

During the reporting period (November 2017–October 2018), *StopPalu*+ and the NMCP team conducted visits to priority sites (Labé, Kankan, Kissidougou) and in secondary sites (Siguiri, Lola, Maferinyah), once each. In addition, the team conducted a study of vector seasonality in Boké and Faranah.

During the visits to the 24 villages, three mosquito collection methods were used: (1) human landing catch (HLC), (2) Centers for Disease Control and Prevention (CDC) light traps, and (3) pyrethrum spray catch (PSC) (*Tables 2* and *3*). These methods were used to gather information on the vector species composition, abundance (for mapping), physiological status, and host-seeking behavior.

Designation	Administrative Regions	District	Villages (Sentinel sites)				
Priority sites	Moyenne Guinée	Labé	Banty, Thialy, Toutouroun				
	Haute Guinée	Kankan	Dalabani, Balandou, Makonon				
	Guinée Forestière	orestière Kissidougou Gbangbadou, Kérédou, Tongbèkoro					
Secondary sites	Haute Guinée	Siguiri	Dankakoro, Tiguigbiri, Tabakoro				
	Guinée Forestière	Lola	Gama konikoni, Togbanata, Weyekore				
	Basse Guinée	Maferinyah	Madinagbe, Fandie, Moribaya				
Sites to study	Basse Guinée	Boké	Kaboye, Dioumaya, Guilere				
seasonality	Haute Guinée	Faranah	Balayani, Foulaya, Tindo				

Table 1: Sentinel sites for entomology surveill	lance activities
---	------------------

Sites	Location			Schedule	of visits		
		Visit #1	(February t	o June)	Visit #2	(July to O	ctober)
		HLC	LT	PYR	HLC	LT	PYR
	Labé						
	Banty,	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)
	Thialy,	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)
	Toutouroun	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)
	Kankan						
	Dalabani,	2 (1)	2 (1)	1 (10)	1 (2)	2 (1)	1 (10)
	Balandou	2 (1)	2 (1)	1 (10)	1 (2)	2 (1)	1 (10)
	Makonon	2 (1)	2 (1)	1 (10)	1 (2)	2 (1)	1 (10)
	Kissidougou						
	Gbangbadou,	2 (1)	2 (1)	1 (10)	1 (2)	2 (1)	1 (10)
	Kérédou,	2 (1)	2 (1)	1 (10)	1 (2)	2 (1)	1 (10)
	Tongbèkoro	2 (1)	2 (1)	1 (10)	1 (2)	2 (1)	1 (10)
Subtotal (price	ority)	18	18	90	18	18	90
	Lola						
	Dankakoro,	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)
	Tiguigbiri,	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)
	Tabakoro	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)
	Maferinyah						
	Gama konikoni	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)
	Togbanata,	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)
	Weyekore	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)
	Siguiri						
	Madinagbe	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)
	Fandie,	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)

 Table 2: Summary of the frequency of collections and number of houses sampled in both seasonal sites for FY2018†

	Moribaya	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)		
Subtotal (sec	ondary)	18	18	90	18	38	90		
Total		36	36 180 36		36	90			
One house pe	er village were sa	mpled over tw	o nights for HL	Cs and Light t	raps, while ter	n houses were	sampled for		
PSCs per village over one day for a total of 10 different houses per month; HLC = human landing collection; LT =									
CDC light trap	CDC light trap; PYR = pyrethrum spray collection.								

Table 3: Summary of the frequency of collections and number of houses sampled in both seasonal sites in FY2018†

		Schedule of visits																
	February May					June July				August			October					
Location	HLC	LT	PYR	HLC	LT	PYR	HLC	LT	PYR	HLC	LT	PYR	HLC	LT	PYR	HLC	LT	PYR
Boké																		
Kaboye,	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)	*	*	*	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)
Dioumaya	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)	*	*	*	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)
Guilere	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)	*	*	*	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)
Faranah																		
Balayani	2 (2)	2 (2)	1 (10)	2 (2)	2 (2)	1 (10)	2 (2)	2 (2)	1 (10)	2 (2)	2 (2)	1 (10)	2 (2)	2 (2)	1 (10)	*	*	*
Foulaya	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)	*	*	*
Tindo	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)	2 (1)	2 (1)	1 (10)	*	*	*
Total number of houses sampled	12	12	60	12	12	60	12	12	60	6	6	30	12	12	60	6	6	30
† One house per houses per mont	village v h; HLC =	vere san human	npled ove landing c	r two nigh ollection;	nts for H LT = CI	LCs and L DC light tra	ight traps ap; PYR :	s, while = pyreth	ten house rum spray	s were sa	ampled f n; * No	or PSCs p	ber village occurred	e over o at this t	ne day for ime	a total of	10 diffe	rent

3.2.2 Assessing vector distribution and abundance

Human landing catch (HLC)

HLCs are a standard for determining human-vector contact and for specifically assessing mosquito biting behavior. HLC was carried out in one house per village for two nights per visit. The activity was carried out inside and outside houses in each of the 24 selected villages. Two collectors were situated inside and outside of a house in each village from 1800 to 0700 hrs; a first pair of collectors worked from 1800 to 0100 hrs and a second pair of collectors worked from 0100 to 0700 hrs. At each hour collectors switched from indoors to outdoors and outdoor to indoors. Collectors used individual tubes to capture mosquitoes that were trying to bite their exposed legs; the tubes were packaged in different plastic bags for each collection hour to determine the timing of aggressive behavior throughout the night. The collected mosquitoes were returned to the laboratory for species identification by standard morphological keys.

HLC outside a house

HLC inside a house

Of 10,301 mosquitoes collected across the sites, 8,636 (84%) were *Anopheles*, including 8,401 *An. gambiae* and 235 *An. funestus*. Among *Anopheles* mosquitoes collected, 4,593 (53.2%) (range across sites: 21.6–68.6%) were caught indoors.

Among priority sites, the Kankan sites collected most *Anopheles* mosquitoes—620 (55.0%) indoors and 507 (45.0%) outdoors. Among the secondary sites, most Anopheles mosquitoes were captured in Maferinyah—1,633 (55.7%) indoors and 1,299 (44.3%) outdoors. While in 14 sites more *An. gambiae* s.l. were caught indoors, in 2 sites (Guilere, Tiguigbiri) more were collected outdoors than indoors; in 8 sites, comparative numbers of *An. gambiae* s.l. were caught indoors and outdoors. The overall mean of mosquitoes collected through HLC results are presented in **Table 4**.

Districts	Sentinel	An. gamb	oiae s.l.	An. fur s.	nestus I.	Cu	lex	Aedes / others		
Districts	sites	Int	Ext	Int	Ext	Int	Ext	Int	Ext	
	Dalabani	64.00	58.25	0.75	0.50	0.75	0.75	0.25	0.75	
	Makono	55.25	41.00	0.00	0.25	19.00	9.50	0.00	2.50	
Kankan	Balandou	35.00	26.75	0.00	0.00	13.50	1.75	1.00	2.00	
	Mean	51.42	42.00	0.25	0.25	11.08	4.00	0.42	1.75	
	Gbangbadou	24.00	18.25	0.00	0.00	0.50	0.25	0.00	0.00	
Kiesideureu	Kérédou	6.00	5.75	0.00	0.00	1.00	0.25	0.00	0.00	
Kissidougou	Tongbèkoro	40.25	29.75	0.00	0.00	0.50	0.50	1.25	0.75	
	Mean	23.42	17.92	0.00	0.00	0.67	0.33	0.42	0.25	
	Banty	16.25	8.75	0.00	0.00	2.75	5.25	0.00	2.75	
l ahá	Tountouroun	7.25	5.75	0.00	0.00	1.50	4.75	1.50	2.75	
Lape	Thialy	22.75	23.25	0.00	0.00	0.75	0.00	0.00	0.00	
Lola	Mean	15.42	12.58	0.00	0.00	1.67	3.33	0.50	1.83	
	Gama koni	20.25	9.25	0.00	0.00	2.25	0.25	0.00	0.00	
	Tokpanata	51.75	53.50	0.00	0.00	0.25	1.00	0.25	0.00	
Loia	Weyakore	19.25	12.00	0.00	0.00	2.00	0.50	0.00	0.00	
	Mean	30.42	24.92	0.00	0.00	1.50	0.58	0.08	0.00	
	Madinagbe	163.50	110.75	0.00	0.00	0.00	0.00	0.00	0.00	
Mafazinash	Fandie	96.75	79.00	0.00	0.00	0.00	0.00	0.00	0.00	
Materinyan	Moribaya	148.00	135.00	0.00	0.00	0.00	0.00	0.00	0.00	
Maferinyah	Mean	136.08	108.25	0.00	0.00	0.00	0.00	0.00	0.00	
	Kaboye	6.25	5.25	0.00	17.50	17.50	17.00	0.00	0.00	
Daleź	Guilere	6.50	8.50	0.00	0.00	23.25	25.50	0.00	0.00	
Lola Maferinyah Boké Faranah	Dioumaya	7.50	7.00	0.00	0.00	15.75	24.00	0.00	0.00	
	Mean	6.75	6.92	0.00	5.83	18.83	22.17	0.00	0.00	
	Balayani	115.00	119.00	5.75	10.50	0.75	1.00	0.75	7.50	
Faranah	Foulaya	128.25	130.00	7.75	15.50	1.25	1.25	0.50	0.50	
Faranan	Tindo	78.50	78.25	9.00	8.25	1.75	2.75	1.25	1.75	
	Mean	107.25	109.08	7.50	11.42	1.25	1.67	0.83	3.25	
	Dankakoro	9.50	5.75	0.50	0.00	37.50	43.75	0.00	0.00	
Cinculat	Tiguigbiri	1.75	3.75	0.00	0.00	31.75	60.00	0.00	0.00	
Siguiri	Tabakoro	1.00	1.25	0.00	0.00	0.75	0.50	0.00	0.00	
	Mean	4.08	3.58	0.17	0.00	23.33	34.75	0.00	0.00	
Overall mean (i outdoor)	indoor and	52.96	45.95	1.11	2.50	5.00	4.58	0.32	1.01	
Percentage		54%	46%	31%	69%	52%	48%	24%	76%	
Overall species	s mean	49.4	6	1.8	0	4.7	79	0.67		

Table 4: Mean abundance and distribution of mosquitoes collected indoors and outdoorsusing HLC over 4 nights (2 nights over 2 visits) of collection in one house per
village.

CDC light traps

CDC light traps were used to collect indoor and outdoor host-seeking mosquitoes. In each village, two houses were randomly selected and sampled for one night, with one trap located indoors (near sleeping spaces, if possible) and a second trap located outdoors from 1800 to 0700 hrs.

Of 2,431 mosquitoes collected across sites, 1,093 (45%) were *Anopheles* mosquitoes— 1,078 *An. gambiae* s.l. and 15 *An. funestus* s.l. Among collected Anopheles mosquitoes, 635 (58.1%) (range across sites: 9.5–100%) were caught indoors. Of all the *An. gambiae* collected using CDC light traps indoors and outdoors, 37.2% and 23.1%, respectively, were caught in Kankan. The overall mean of mosquitoes collected by CDC light trap collection are presented in **Table 5**.

A CDC light trap placed outside to capture mosquitoes

A CDC light trap placed inside to capture mosquitoes

		•	h	ouse pe	r village	•			
		C	DC light	trap re	sults FY	2018			
	Sentinel	An. gar	nbiae	An. fu	nestus	Cu	lex	Aedes / others	
Districts	sites	Int	Ext	Int	Ext	Int	Ext	Int	Ext
	Dalabani	11.5	6.0	0.0	0.0	11.5	16.5	0.5	1.5
Kankan	Makono	40.5	41.5	0.0	0.0	14.5	2.5	3.5	1.5
	Balandou	64.0	5.0	0.0	0.0	22.0	13.0	0.5	0.5
	Mean	38.7	17.5	0.0	0.0	16.0	10.7	1.5	1.2
	Gbangbadou	1.0	0.5	0.0	0.0	4.0	3.0	0.0	0.0
Kisaidaunau	Kérédou	15.5	11.0	0.0	0.0	12.5	10.5	2.5	1.0
Kissiaougou	Tongbèkoro	15.0	10.5	0.0	0.0	4.0	3.5	0.5	0.5
	Mean	10.5	7.3	0.0	0.0	6.8	5.7	1.0	0.5
	Banty	0.0	0.0	0.0	0.0	12.5	2.5	0.0	5.5
Labá	Tountouroun	0.0	0.0	0.0	0.0	13.5	32.5	1.0	7.5
Labe	Thialy	7.0	0.5	0.0	0.0	0.5	2.0	0.0	0.0
	Mean	2.3	0.2	0.0	0.0	8.8	12.3	0.3	4.3
	Gama Koni	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0
	Tokpanata	14.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Loia	Weyakore	3.5	21.5	0.0	0.0	1.0	1.0	0.0	0.0
	Mean	6.2	7.2	0.0	0.0	0.7	0.3	0.0	0.0
Mafarinyah	Madinagbe	3.0	2.5	0.0	0.0	0.0	0.0	0.0	0.0
Maferinyah	Fandie	1.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0

Table 5: Mean abundance and distribution of mosquitoes collected indoors and outdoors using Light traps over 4 nights (2 nights over 2 visits) of collection in one house per village.

		C	DC light	trap res	sults FY	2018			
	Sentinel	An. gar	nbiae	An. fu	nestus	Cu	lex	Aedes / others	
Districts	sites	Int	Ext	Int	Ext	Int	Ext	Int	Ext
	Moribaya	4.0	3.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mean	2.7	2.0	0.0	0.0	0.0	0.0	0.0	0.0
	Kaboye	9.5	14.5	0.0	0.0	18.5	24.5	0.0	0.0
Delet	Guilere	10.0	10.5	0.0	0.0	20.5	28.0	0.0	0.5
Воке	Dioumaya	8.0	11.0	0.0	0.0	18.5	25.0	0.0	1.0
	Mean	9.2	12.0	0.0	0.0	19.2	25.8	0.0	0.5
	Balayani	33.5	21.0	3.0	0.5	6.0	8.0	1.5	6.5
Farran	Foulaya	48.5	22.5	2.5	1.5	8.5	10.5	5.0	8.5
Faranan	Tindo	10.5	4.5	0.0	0.0	8.5	8.5	0.0	4.0
	Mean	30.8	16.0	1.8	0.7	7.7	9.0	2.2	6.3
	Dankakoro	4.5	9.5	0.0	0.0	21.0	27.0	0.0	0.0
O i av viai	Tiguigbiri	3.0	28.5	0.0	0.0	64.5	67.0	0.0	0.0
Siguiri	Tabakoro	3.5	2.5	0.0	0.0	11.5	10.5	0.0	0.0
	Mean	3.7	13.5	0.0	0.0	32.3	34.8	0.0	0.0
Overall mean (in outdoor)	door /	13.0	9.5	0.2	0.1	11.4	12.3	0.6	1.6
Percentages		58%	42%	73%	27%	48%	52%	28%	72%
Overall species	mean	11.	2	0.	2	11	.9	1.	1

Pyrethrum spray catches

Pyrethrum spray catches consists of collecting adult mosquitoes inside the houses to determine species present indoors and their physiological state. Collections were conducted in the 24 selected villages. Depending on the size of the village, 10 houses/huts were selected choosing an arbitrary start location and skipping one or two houses and using the second or third house. In each house, the floor was covered with white sheets to collect knocked-down mosquitoes, with collection teams receiving permission from all households before spraying. The collections took place from 0700 to 1000 hrs. An operator sprayed the indoor area with a pyrethroid insecticide after taking all necessary precautions, including removing all food and other sensitive materials. Houses were sprayed from the outside inward through the openings to prevent mosquitoes from escaping. After spraying, all windows and doors were kept closed for 15 minutes. After 15 minutes, the sheets were taken out of the house to collect mosquitoes that had fallen on the sheets. Mosquitoes were brought to the laboratory where their species were identified, and their physiological status (unfed, fed, gravid, and semi-gravid) was determined.

Pyrethrum collection in Kankan and Boké

Of the 1,664 female Anopheles mosquitoes collected across sites, all were *An. gambiae* s.l. Of the 1,664 female *An. gambiae* s.l., 1,013 (60.9%) were fed, 162 (9.7%) were unfed, 489 (29.4%) were semi-gravid and none were gravid. The results of the pyrethrum spray catch and resident reports of LLIN possession are presented in **Table 6.**

				Pyrethr	um spi	ray catcl	n results	s FY 20	18			
	Sentinel	A	n. gamb	iae s.l.		A	n. funes	stus s.l.		Reside	ent repoi possess	rts of LLIN sion
Districts	sites	unfed	fed	SG	G	unfed	fed	SG	g	Beds	LLIN	Residents
	Dalabani	0.0	7.1	0.3	0.0	0.0	0.0	0.0	0.0	0.5	0.4	0.9
Kankan	Makono	0.0	4.5	0.1	0.0	0.0	0.0	0.0	0.0	0.5	0.4	1.0
nainai	Balandou	0.0	5.0	0.3	0.0	0.0	0.0	0.0	0.0	0.5	0.5	1.1
	Mean	0.0	5.5	0.2	0.0	0.0	0.0	0.0	0.0	0.5	0.4	1.0
	Gbangbadou	0.4	0.5	1.4	0.0	0.0	0.0	0.0	0.0	0.5	0.5	1.6
Kinnidaurau	Kérédou	0.2	1.1	1.6	0.0	0.0	0.0	0.0	0.0	0.7	0.3	2.3
Kissidougou	Tongbèkoro	0.1	2.3	2.3	0.0	0.0	0.0	0.0	0.0	0.6	0.5	2.1
	Mean	0.2	1.3	1.8	0.0	0.0	0.0	0.0	0.0	0.6	0.4	2.0
	Banty	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	1.0	1.0	2.0
Labá	Tountouroun	0.0	0.3	0.3	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.8
Labe	Thialy	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.9	2.1
	Mean	0.0	0.3	0.1	0.0	0.0	0.0	0.0	0.0	1.0	1.0	2.0
	Gama Koni	0.2	1.4	1.6	0.0	0.0	0.0	0.0	0.0	0.8	0.5	1.8
	Tokpanata	0.2	0.9	1.2	0.0	0.0	0.0	0.0	0.0	0.6	0.5	1.3
LUIA	Weyakore	1.9	1.9	2.4	0.0	0.0	0.0	0.0	0.0	0.8	0.6	1.6
	Mean	0.8	1.4	1.7	0.0	0.0	0.0	0.0	0.0	0.7	0.5	1.6
	Madinagbe	0.0	2.5	2.6	0.0	0.0	0.0	0.0	0.0	1.5	1.1	2.5
Meferinyek	Fandie	0.0	2.0	2.4	0.0	0.0	0.0	0.0	0.0	0.8	0.4	1.6
Marennyan	Moribaya	0.0	3.1	2.8	0.0	0.0	0.0	0.0	0.0	0.6	0.4	1.3
	Mean	0.0	2.5	2.6	0.0	0.0	0.0	0.0	0.0	1.0	0.6	1.8
Siguiri	Dankakoro	0.4	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.4	1.9
Siguin	Tiguigbiri	0.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.5	1.3

Table 6: Mean abundance and distribution of mosquitoes collected using the pyrethrum spray
catches (indoors) over 2 nights (1 night over 2 visits) of collection in ten houses per village.

				Pyrethr	um spi	ay catcl	n results	s FY 20)18			
	Sontinol	A	n. gamb	iae s.l.		A	n. funes	stus s.	Ι.	Reside	ent repoi possess	rts of LLIN sion
Districts	sites	unfed	fed	SG	G	unfed	fed	SG	g	Beds	LLIN	Residents
	Tabakoro	0.2	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.1	1.1
	Mean	0.2	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.3	1.4
Seasonality s	ites											
	Kaboye	0.0	0.2	0.1	0.0	0.0	0.0	0.0	0.0	2.5	1.2	6.1
Daká	Guilere	0.0	0.5	0.2	0.0	0.0	0.0	0.0	0.0	2.5	2.4	5.8
Боке	Dioumaya	0.2	0.4	0.3	0.0	0.0	0.0	0.0	0.0	2.5	1.1	5.5
	Mean	0.1	0.4	0.2	0.0	0.0	0.0	0.0	0.0	2.5	1.6	5.8
	Balayani	2.1	8.1	2.3	0.0	0.0	0.0	0.0	0.0	3.0	2.0	6.3
Forenah	Foulaya	1.9	5.4	1.6	0.0	0.0	0.0	0.0	0.0	3.2	2.7	6.9
Faranan	Tindo	0.6	2.0	1.0	0.0	0.0	0.0	0.0	0.0	2.8	1.2	4.7
	Mean	1.5	5.2	1.6	0.0	0.0	0.0	0.0	0.0	3.0	2.0	6.0
Overall mean		0.4	2.1	1.0	0.0	0.0	0.0	0.0	0.0	1.2	0.9	2.7

Larvae collection

As part of mosquito surveillance efforts, a larval collection was performed in each sentinel village. The goal of this collection was to gather information on mosquito breeding sites and collect mosquitoes for insecticide susceptibility tests. Collections were performed during the rainy season (May–July 2018), with sites selected during searches at the sentinel sites, either during visits or when driving to and from the sentinel sites. Pupae and larvae were collected from different water bodies using pans and dippers, and they were then raised in the laboratories located in the Regional and Prefectural Health Directorates and health centers. The larvae were fed with ground fish food and transferred to standard insect rearing cages after pupation; they received a 5%–10% glucose solution ad libitum before being tested.

Collection of larvae in the sentinel sites

3.2.3 Assessing vector seasonality

The sites Boke and Faranah were sampled to understand the vector seasonality.

The results are presented in the table below:

	Sentinel Site		Febr	uary			Ма	у			Ju	ıe				July			Aug	ust			Octo	ber	
		A	n.	A	In.	A	n.	A	n.	A	n.	Þ	n.	A	n.	An. fune	estus	A	n.	A	n.	A	n.	A	n.
		gam	ibiae	fune	estus	gam	biae	fune	estus	gam	ibiae	fune	estus	gam	ibiae	s.I.		gam	nbiae	fune	estus	gam	biae	fune	əstus
		S	.1.	S	s. <i>l</i> .	S	.1.	S	:. <i>I</i> .	S	.1.	S	:. <i>I.</i>	S	.1.			S	.1.	S	. <i>I</i> .	S	.I.	S	:. <i>I</i> .
		Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext
Boké	Kaboye	0	0	0	0	0	0	0	0	6	5	0	0	*	*	*	*	11	11	0	0	8	5	0	0
	Guilere	1	0	0	0	0	0	0	0	3	7	0	0	*	*	*	*	10	13	0	0	12	14	0	0
	Dioumaya	0	0	0	0	0	0	0	0	2	5	0	0	*	*	*	*	13	13	0	0	15	10	0	0
	Total	1	0	0	0	0	0	0	0	11	17	0	0	*	*	*	*	34	37	0	0	35	29	0	0
Faranah	Balayani	52	110	5	12	83	80	1	4	155	193	5	18	79	41	6	4	91	52	6	4	*	*	*	*
	Foulaya	46	86	6	37	128	106	3	1	170	219	7	16	79	47	7	6	90	62	8	2	*	*	*	*
	Tindo	57	77	22	19	65	38	3	0	98	142	7	6	45	28	0	3	49	28	4	5	*	*	*	*
	Total	155	273	33	68	276	224	7	5	423	554	19	40	203	116	13	13	230	142	18	11	*	*	*	*
* No colle	ction occurr	ed at t	his tir	ne																					

Table 7: Seasonal sum of An. gambiae s.l. and An. funestus s.l. collected in Boké and Faranah villages as determined using HLCs

Table 8: Seasonal sum of An. gambiae s.l. and An. funestus s.l. collected in Boké and Faranah as determined using CDC light traps

	Sentinel Site		Febr	uary			M	ay			Jur	ne			Jı	ıly			Aug	just			Octob	er	
		A gan s	n. Ibiae	ے fune s	An. estus s.l.	ے gan s	n. nbiae s.l.	ے fune s	n. estus :.l.	Aı gamı s.	n. biae I.	ہ fun ع	An. estus s.l.	ے gan s	An. nbiae s.l.	ے fune s	An. estus s.l.	A gan s	n. Ibiae .I.	ے fune s	\n. estus s.l.	An. gambia	e s.l.	ے fune ع	n. əstus s.l.
		Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext
Boké	Kaboye	0	0	0	0	0	0	0	0	4	3	0	0	*	*	*	*	8	11	0	0	7	5	0	0
	Guilere	0	0	0	0	0	0	0	0	3	4	0	0	*	*	*	*	8	10	0	0	8	8	0	0
	Dioumaya	0	0	0	0	0	0	0	0	1	3	0	0	*	*	*	*	10	15	0	0	5	4	0	0
	Total	0	0	0	0	0	0	0	0	8	10	0	0	*	*	*	*	26	36	0	0	20	17	0	0
Faranah	Balayani	2	4	4	0	0	2	0	0	48	27	2	1	8	4	0	0	9	5	2	0	*	*	*	*
	Foulaya	13	7	2	2	2	1	0	0	60	27	3	1	10	3	0	0	12	5	0	0	*	*	*	*
	Tindo	0	0	0	0	0	2	0	0	9	3	0	0	5	2	0	0	7	2	0	0	*	*	*	*
	Total	15	11	6	2	2	5	0	0	117	57	5	2	23	9	0	0	28	12	2	0	*	*	*	*
* No colle	ction occurre	d at tl	his tim	ie																					

	Sentinel Site		Febru	ary			Ma	ay			Ju	ne			Ju	lly			Aug	just			Octob	er	
		A	n. gan	nbiae			An. ga	ambia	е		An. ga	ambia	е	,	An. ga	ambia	е	,	An. ga	ambia	е	A	n. gan	nbiae	
		Unfed	Fed	SG	G	Int	Ext	Int	Ext																
Boké	Kaboye	0	0	0	0	0	0	0	0	0	0	0	0	*	*	*	*	0	2	0	0	0	2	0	0
	Guilere	0	0	0	0	0	0	0	0	0	1	0	0	*	*	*	*	0	3	0	0	0	5	0	0
	Dioumaya	0	0	0	0	0	0	0	0	1	1	0	0	*	*	*	*	2	3	0	0	0	3	0	0
	Total	0	0	0	0	0	0	0	0	1	2	0	0	*	*	*	*	2	8	0	0	0	10	0	0
Faranah	Balayani	7	13	0	0	7	23	0	0	21	79	0	0	1	26	0	0	5	20	0	0	*	*	*	*
	Foulaya	5	17	0	0	6	28	0	0	10	34	0	0	5	15	0	0	12	13	0	0	*	*	*	*
	Tindo	0	5	0	0	0	10	0	0	1	12	0	0	0	10	0	0	10	2	0	0	*	*	*	*
	Total	12	35	0	0	13	61	0	0	32	125	0	0	5	41	0	0	27	35	0	0	*	*	*	*
* No colle	ction occurre	d at this	time																						

Table 9: Seasonal sum of An. gambiae s.I. and An. funestus s.I. collected in Boké and Faranah as determined using pyrethrum spray catches

3.2.4 Assessing vector biting behavior

Analysis of the results of the vectors' biting behavior using HLC, recorded during hour-long intervals, shows biting behavior inside and outside houses in the sites between 1900 and 0600 hrs. Whereas peak indoor biting was observed between 0200 and 0300 hrs, peak outdoor biting was observed between 0000 and 0300 hrs (*Table 7, Figure 5*). Note, peak biting times indoors and the outdoors varied substantially between sites (*Figure 6*).

Figure 5: Total Biting behavior An. gambiae s.l. (as determined by HLC)

Time	Lo	la	La	abé	Kan	kan	Kissid	ougou	Mafer	inyah	Sig	uiri	Во	ké	Fara	anah	Percer	ntage
intervals	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext	Int	Ext
1800-1900	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	100	0
1900-2000	1	1	3	2	15	10	3	2	24	1	0	0	0	0	9	20	60	40
2000-2100	2	6	11	2	23	21	7	12	76	5	2	3	4	2	39	39	65	35
2100-2200	18	16	15	9	42	39	10	23	114	40	4	3	5	3	55	80	55	45
2200-2300	23	19	19	15	51	47	14	12	122	92	5	4	5	7	91	99	53	47
2300-0000	27	29	18	21	47	43	58	44	152	148	11	7	9	5	127	106	53	47
0000-0100	45	42	42	18	71	51	62	51	153	151	10	8	12	9	140	170	52	48
0100-0200	55	36	22	20	73	64	28	22	156	154	11	9	10	10	163	172	52	48
0200-0300	51	49	25	17	73	59	43	38	212	156	4	3	14	13	173	178	54	46
0300-0400	51	46	19	19	58	55	37	4	232	194	2	3	11	14	166	143	55	45
0400-0500	62	39	5	17	65	44	15	5	224	202	0	2	6	7	188	160	54	46
0500-0600	28	13	3	9	62	53	4	2	88	84	0	1	3	9	113	126	50	50
0600-0700	2	3	3	2	34	18	0	0	80	72	0	0	2	4	23	16	56	44
Total	365	299	185	151	617	504	281	215	1,633	1,299	49	43	81	83	1,287	1,309	58.3%	41.6%

Table 10: Total An. gambiae s.l. biting behavior as determined using HLCs

Figure 6: Biting behavior An. gambiae s.l. (as determined by HLC, across districts)

Anopheles identification, coding, and packaging on site in Faranah

3.2.5 Species identification and sporozoite index

All *Anopheles* mosquitoes collected by the different sampling methods (HLCs, CDC light traps, and pyrethrum spray catches) in the 24 villages were morphologically identified by genus and species using the standard keys. *Anopheles* were placed individually in tubes containing silica gel, numbered, coded, and preserved in refrigerators at UGANC.

PCR species identification

The molecular identification of species of the *An. gambiae* complex in Guinea was made using polymerase chain reaction (PCR) *SINE200* according to the protocol of Santolamazza et al (2008).¹²

A total of 1,410 *An. gambiae* s.l. females from eight villages in Guinea were analyzed using PCR *SINE*. The results of molecular tests performed are presented in *Table 11*

- Three species were found in the sites: *An. gambiae* sensu strictu (s.s.), *An. coluzzii*, and *An. arabiensis*.
- In seven locations out of the eight (7/8), An. gambiae was the major species, with frequencies of 97.46% (Dabola), 84.35% (Faranah 2), 59.71% (Kankan), 98.48% (Kissidougou), 99.5% (Labé), 98.02% (Faranah 1), and 72.73% (Lola).
- In Siguiri, An. coluzzii was the predominant species, with a frequency of 55.05%.

¹² Santolamazza, F. Mancini, E., Simard, F. Qi, Y., Tu, Z., and della Torre, A (2008) Insertion polymorphisms of *SINE200* retrotransposons within speciation islands of *Anopheles gambiae* molecular forms. *Malaria Journal, 7*, 163.

- An. arabiensis was recorded with low frequencies only in the areas of Dabola (1.52%), Kissidougou (1.02%), and Labé (0.51%).
- Hybrids of *An. gambiae* and *An. coluzzii* were noted in Dabola (0.51%) and Siguiri (2.02%).

Sites	N tested		An. gamb	iae s.l.	
		An. gambiae s.s.	An. coluzzii	Hybrid – An. gambiae s.s. / An. coluzzii	An. arabiensis
Dabola	197	192	1	1	3
Faranah 2	115	97	18	0	0
Kankan	206	123	83	0	0
Kissidougou	197	194	1	0	2
Labé	198	197	0	0	1
Siguiri	198	85	109	4	0
Faranah 1	101	99	2	0	0
Lola	198	144	54	0	0
Total	1,410	1,131	268	5	6

Table 11: Distribution of An. gambiae s.l. species from districts in Guinea

ELISA to determine the sporozoite index

As recommended by the work plan, 400 *An. gambiae* s.l. from the seasonality sites (Boké and Faranah) were tested with enzyme-linked immunosorbent assay-circumsporozoite protein of *Plasmodium falciparum* (ELISA-CSP), of which six were positive, for an average sporozoite index of 1.5% (*Table 12*). The positive sporozoite of Boké was collected by HLC and the among the five positives of Faranah, 2 were from HLC and three from PYR.

		Captu	re method			
Sites	Species	HLC	PYR	Number tested	Number positive	Positive (%)
Boké	An. gambiae s.l.	50	0	50	1	2.0
Faranah	An. gambiae s.l.	300	50	350	5	1.4
Total		350	50	400	6	1.5

 Table 12: An. gambiae s.l. sporozoite index

3.3 Objective 3: Determine insecticide resistance of malaria vectors

3.3.1 Monitoring phenotypic resistance

Resistance tests were carried out on nulliparous female mosquitoes derived from larvae and pupae collected at the district sites as per standard World Health Organization (WHO) protocol, i.e., 1-hour exposure of mosquitoes to insecticide-treated filter papers in WHO test tubes and monitored for mortality 24 hours after exposure.¹³ Six insecticides were tested: deltamethrin 0.05%, alpha-cypermethrin, and permethrin 0.75% for sensitivity/susceptibility; and pirimiphos-methyl 0.25%, propoxur 0.1%, and bendiocarb 0.1%. For each test, 125 mosquitoes were used: 100 mosquitoes to test insecticide efficacy; 25 mosquitoes as

¹³ WHO (2016) Test procedures for monitoring insecticide resistance in malaria mosquitoes. WHO, Geneva, Switzerland.

control. The control group mosquitoes were not exposed to any insecticide but monitored for 24 hours. The susceptibility and intensity tests were performed once for all sites

WHO test tube bioassay showed that sampled vector populations are resistant to permethrin and alpha-cypermethrin, and susceptible to deltamethrin; also, the tests showed susceptibility to deltamethrin, pirimiphos-methyl, bendiocarb, and propoxur (*Table 13*).

	Componentier	Bol	кe	La	be	Kanl	kan	Kissido	ugou	Lo	la	Fara	nah	Sigu	uiri	Maferi	nyał
Insecticides	Concentration	Т	С	т	С	т	С	Т	С	Т	С	т	С	Т	С	т	С
Deltamethrin	0.05%	100	0	9 8	0	100	0	100	0	100	0	100	0	100	0	100	4
Permethrin	0.75%	94	0	97	0	95	0	91	0	72	0	96	0	91	0	94	0
Alpha-	0.05%	88	0	75	0	90	0	95	0	92	0	94	0	100	0	90	0
Cyprethrin																	
Pirimiphos- methyl	0.25%											100	0				
Bendiocarb	0.1%											100	4				
Propoxur	0.1%											100	0	100			
T = mortality in	mosquitoes expos	ed to	inse	ectici	de;	C = m	orta	lity in cor	ntrol n	nosqu	itoe	s		•		•	

Table 13: Summary of insecticide susceptibility testing of mosquito vectors (% mortality; 100 mosquitoes were used to test the insecticide and 25 as control group)

Susceptibility (98 – 100% mortality); Possibility of resistance (90-97%); Resistance (<90%)

Intensity tests in CDC bottles

To measure the intensity of mosquito resistance to insecticides that are advocated for use in LLINs, intensity tests were conducted with deltamethrin, permethrin, and alphacypermethrin. For this test, 250 ml bottles are coated with the insecticides, dried, and then mosquitoes are exposed for 30 minutes (diagnosis time) to determine susceptibility. Various doses are tested: the diagnostic dose is used to define the susceptibility/resistance, and vector survival at doses that are more concentrated (2x, 5x, 10x), and the diagnostic dose indicates resistance. In the control groups, the mosquitoes were not exposed to any insecticide. **Table 14** shows a summary of test results to date.

		Bo	ko		bo	Kan	kan	Kissdo		Mafe	rinvah
Insecticides	Doses	во	ĸe	La	be	Nall	Kall	KISSUU	ugou	Fiale	riiyaii
		Т	С	Т	С	Т	С	Т	С	Т	С
	×	100	4	98	0	98	0	100	0	100	4
Doltomotherin	2×	100	0	100	0	100	0	100	0	100	0
Deitamethrin	5×	100	0	100	0	100	0	100	0	100	0
	10×	100	0	100	0	100	0	100	4	100	0
	l×	94	0	97	0	95	0	91	0	94	0
Downsothwin	2×	100	0	100	0	100	0	100	0	100	0
Permethrin	5×	100	0	100	0	100	0	100	0	100	0
	10×	100	0	100	0	100	0	100	0	100	4
	×	88	0	75	0	95	0	95	0	90	0
Alpha-	2×	98	0	100	0	100	0	100	0	100	0
cypermethrin	5×	100	0	100	0	100	0	100	0	100	0
	10×	100	0	100	0	100	0	100	0	100	0
T = mortality in r	nosquitoe		d to ins	octicido	C = mc	rtality in c	ontrol m	osquitoos			

 Table 14: Summary of insecticide intensity tests with CDC bottle bioassay (% mortality). 100

 mosquitoes were used to test the insecticide and 25 as control group

T = mortality in mosquitoes exposed to insecticide; C = mortality in control mosquitoes

Susceptibility (98 – 100% mortality); Possibility of resistance (90 – 97%); Resistance (<90%)

3.3.2 Genotypic resistance

A total of 1,400 *An. gambiae* s.l. were shipped to CREC for detection of the *Kdr* West and *Ace*-1R mutations.

Determinations of the *Kdr* L1014F (*Kdr* West) and *Ace*-1 mutations were carried out following the protocol of Martinez-Torres et al (1998)¹⁴ and Weill et al (2004)¹⁵ respectively.

Of 1,410 mosquitoes analyzed for *Kdr* PCR in all sites, 987 were resistant homozygotes (RR), 278 heterozygotes (RS), and 145 susceptible homozygotes (SS). The allelic frequency of the *Kdr* (F(Kdr)) mutation in *An. gambiae* s.s. ranged from 69% in Labé to 87 % in Kissidougou.

Furthermore, *Ace*-1R mutation was recorded in all localities with very low frequencies (F(Ace-1)), ranging from 1% in Siguiri to 5% in Kissidougou.

¹⁴ Martinez-Torres. D., Chandre, F., Williamson, M. S., Darriet, F., Bergé, J. B., Devonshire, A. L., Guillet, P., Pasteur, N., and Pauron, D (1998) Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector *Anopheles* gambiae s.s. Insect Molecular Biology, 7, 179–84.

¹⁵ Weill, M., Malcolm, C., Chandre, F., Mogensen, K., Berthomieu, A., Marguine, M., and Raymond, M (2004) The unique

mutation in Ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. *Insect Molecular Biology, 13,* 1–7.

The detection results for *Kdr* West and *Ace*-1R mutations in *An. gambiae* s.l. are presented in *Table 15*

Sites	N tested			kdr				Ace-1	
		RR	RS	SS	F (Kdr)	RR	RS	SS	F (Ace-1)
Dabola	197	150	34	13	0.85	0	15	182	0.04
Faranah 2	115	83	20	12	0.81	0	7	108	0.03
Kankan	206	156	36	14	0.84	0	10	196	0.02
Kissidougou	197	157	28	12	0.87	0	19	178	0.05
Labé	198	115	44	39	0.69	0	9	189	0.02
Siguiri	198	134	43	21	0.79	0	4	194	0.01
Faranah 1	101	69	27	5	0.82	0	7	94	0.03
Lola	198	123	46	29	0.74	0	10	188	0.03
Total	1,410	987	278	145	0.80	0	81	1329	0.03

Table 15: Summary of Kdr West and Ace-1R frequency distribution in An. gambiae s.l.

Annex. Laboratory Equipment, Materials, and Reagents

Entomological laboratory equipment and materials are summarized in Table A-1.

 Table A-1:
 Entomological laboratory equipment and materials

Goods	Amount	Comments
Generator	1	Good condition
Inverter 4000 and 5000 W	2	Good condition
Spectrophotometer calibration from 450 to 630 nanometers	1	Good condition
Desktop computer with accessories	1	Good condition
Stabilizer and two wall thermometers	1	Good condition
Refrigerator (for the cold chain)	4	Good condition
Garbage bags and plastic waste	6	Good condition
Cat food	1	Good condition
Pair of rabbits and food	2	Good condition
Sanitary equipment kit	1	Good condition
Large bucket (60 liters)	2	Good condition
Small bowls	16	Good condition
Table	2	Good condition
Stools	6	Good condition
Rolling chairs	3	Good condition
Lab coats	14	Good condition
Loupe	4	Good condition
Microscope	1	Good condition
Electric centrifuge	1	Good condition
Electric Pipette	1	Good condition
Accumet XL 200 with accessories	1	Good condition
Fischer scientific Isotemp	2	Good condition
Hot pad for heating surface	1	Good condition
Millipore unit	1	Good condition
Giant sterile 50 pairs	5	Good condition

Goods	Amount	Comments
Face masks 20 pack	20	Good condition

The reagents are summarized in *Table A-2*.

Goods	Amount	Observation
Citric acid	1	Good condition
Casein cattle	1	Good condition
Sodium chloride ACS	1	Good condition
Bovine serum albumin BSA	1	Good condition
Ortotolidine	1	Good condition
Tween 20 700 ml	1	Good condition
NN dimethyl formamide / 250ml	1	Good condition
Igepal CA - 630/50 ml	1	Good condition
thimerosal 10g	1	Good condition
Phenol red sodium salt 5 g	1	Good condition
Hydrogen peroxide 100 ml	2	Good condition
Sulfuric acid 500ml	1	Good condition
Glycerol 1I	1	Good condition
Disodium phosphate (Na2HPO4) Aliquot	1	Good condition
Potassium chloride (KCI) 1kg	1	Good condition
KH2PO4 potassium phosphate	1	Good condition
PBS 8 tablets / Aliquot	1	Good condition
Sodium hydroxide (NaOH) / Aliquot	1	Good condition
Sterile water	1	Good condition
Capture antibody (Pf)	1	Good condition
Conjugated antibody (PF)	1	Good condition
Antigens (PF0 Positive Controls)	1	Good condition
Nunc plate (ELISA)	1	Good condition
Water DNase 1 liter	1	Good condition
Hydrochloric acid 500 ml	1	Good condition
Acetone 1 liter	1	Good condition
Methanol 1 liter 95 degree	2	Good condition
Soda (NaOH) em tablets 100	1	Good condition
Orthotolidine Aliquot	1	Good condition
Silica gel 5Kg1	1	Good condition

 Table A-2:
 Laboratory reagents