

U.S. PRESIDENT'S MALARIA INITIATIVE





# SENEGAL 2019 FINAL ENTOMOLOGICAL MONITORING REPORT

JANUARY 1, 2019 – JANUARY 31, 2020

**Recommended Citation:** The PMI VectorLink Project. March 2020. *VectorLink Senegal Final Entomological Report: January 1, 2019 – January 31, 2020.* Rockville, MD: The PMI VectorLink Project, Abt Associates Inc.

Contract: AID-OAA-I-17-00008

Task Order: AID-OAA-TO-17-00027

Submitted to: United States Agency for International Development/PMI

Date of submission: March 2020

Date of approval: June 2020

# CONTENTS

| CO  | NTE        | NTS     |                                                                                                     | i  |  |  |  |  |
|-----|------------|---------|-----------------------------------------------------------------------------------------------------|----|--|--|--|--|
| Acı | ronym      | ıs      |                                                                                                     | i  |  |  |  |  |
| Ex  | ecutiv     | e Summ  | nary                                                                                                | ii |  |  |  |  |
| Ι.  |            |         | ·                                                                                                   |    |  |  |  |  |
|     |            |         |                                                                                                     |    |  |  |  |  |
| ۷.  |            |         |                                                                                                     |    |  |  |  |  |
|     | 2.1        |         | l Districts and Sites                                                                               |    |  |  |  |  |
|     | 2.2<br>2.3 |         | s populations dynamics<br>Susceptibility Test                                                       |    |  |  |  |  |
|     | 2.5        |         | Laboratory Analysis                                                                                 |    |  |  |  |  |
| 2   | Poor       |         |                                                                                                     |    |  |  |  |  |
| э.  |            |         |                                                                                                     |    |  |  |  |  |
|     | 3.1        |         | populations dynamics                                                                                |    |  |  |  |  |
|     |            | 3.1.1   | Species Composition                                                                                 |    |  |  |  |  |
|     |            | 3.1.2   | Human Biting Rate                                                                                   |    |  |  |  |  |
|     |            | 3.1.3   | Indoor Resting Densities and Abdominal Status of Females Collected by PSC.                          |    |  |  |  |  |
|     |            | 3.1.4   | Parity Rate                                                                                         |    |  |  |  |  |
|     | 3.2        |         | Vector Susceptibility to Insecticides                                                               |    |  |  |  |  |
|     |            | 3.2.I   | WHO Insecticide Susceptibility Test on Adult Mosquitoes                                             |    |  |  |  |  |
|     |            | 3.2.2   | Intensity of Resistance to Pyrethroids                                                              |    |  |  |  |  |
|     |            | 3.2.3   | Tests with Synergists                                                                               |    |  |  |  |  |
|     |            | 3.2.4   | Susceptibility of An. gambiae s.l. to Clothianidin                                                  | 25 |  |  |  |  |
|     |            | 3.2.5   | Susceptibility of An. gambiae s.l. to Chlorfenapyr                                                  | 25 |  |  |  |  |
|     | 3.3        | Labora  | tory Analysis                                                                                       |    |  |  |  |  |
|     |            | 3.3.I   | Origin of Blood Meals                                                                               |    |  |  |  |  |
|     |            | 3.3.2   | Plasmodium falciparum Infection Rate of Vector Populations                                          | 29 |  |  |  |  |
|     |            | 3.3.3   | Entomological Inoculation Rate                                                                      |    |  |  |  |  |
|     |            | 3.3.4   | Species Composition of the gambiae Complex                                                          | 31 |  |  |  |  |
|     |            | 3.3.5   | Molecular Characterization of Target Site Resistance Mutations ( <i>kdr</i> and Ace 1) gambiae s.l. |    |  |  |  |  |
|     |            | 3.3.6   | kdr Mutations                                                                                       |    |  |  |  |  |
|     |            | 3.3.7   | Ace 1 <sup>R</sup> Mutation                                                                         |    |  |  |  |  |
| 4.  | Conc       | clusion |                                                                                                     | 39 |  |  |  |  |
| 5.  | Refe       | rences  |                                                                                                     | 40 |  |  |  |  |

| 6. | ANNEXES                                                                                                              |
|----|----------------------------------------------------------------------------------------------------------------------|
|    | Annex A: Human biting Rate (HBR), Endophagic Rates (ER), Indoor Resting Densities (IRD) and                          |
|    | Parity Rate (PR) of An. gambiae s.l. Females by Sites and Geographic Area                                            |
|    | Annex B: Human Biting Rates (HBR), Endophagic Rates (ER), Indoor Resting Densities (IRD) et                          |
|    | Parity Rate (PR) of An. funestus s.l. Females by Sites and Geographic Area                                           |
|    | Annex C: Abdominal Status of Indoor Resting An. gambiae s.l. Females by Sites and Eco-geographical                   |
|    | Area                                                                                                                 |
|    | Annex D: Human Biting Rates (HBR), Endophagic Rates (ER), Indoor Resting Densities (IRD) and                         |
|    | Parity Rate (PR) of An. funestus s.l. Females in the Sentinel Health Districts By Site, Geographic                   |
|    | Area and Season45                                                                                                    |
|    | Annex E: Abdominal Status of Indoor Resting An. funestus s.l. Females by Eco-geographical Area, Sites,               |
|    | and Season46                                                                                                         |
|    | Annex F: Human Biting Rates (HBR), Endophagic Rates (ER), Indoor Resting Densities (IRD) and                         |
|    | Parity Rate (PR) of An. gambiae s.l. Female by the Sentinel Health Districts, Site and Season47                      |
|    | Annex G: Human Biting Rates (HBR), Endophagic Rates (ER), Indoor Resting Densities (IRD) et                          |
|    | Parity Rate (PR) of <i>An. funestus</i> s.l. Females by Geographic Area, Health Districts, Sites and                 |
|    | Season                                                                                                               |
|    | Annex H: Species Composition of the Anopheline Fauna by Health Districts, Sites, and Season                          |
|    | Annex I-A: Insecticide Susceptibility Monitoring and Intensity of Resistance to Pyrethroids                          |
|    | Annex J: Blood Meal Sources and Anthropophilic Rate of <i>An. gambiae</i> s.l. and <i>An. funestus</i> s.l. by       |
|    | Geographic Area (January 2019-January 2020)                                                                          |
|    | Annex K: Trophic Profile and Anthropophilic Rates of <i>An. pharoensis</i> and <i>An. rufipes</i> Females by         |
|    | Geographic Area and by District                                                                                      |
|    | Annex L: Trophic Profile and Anthropophilic Rates of <i>An. gambiae</i> s.l. and <i>An. funestus</i> s.l. Females by |
|    | Geographic Area and by District                                                                                      |
|    | Annex M: Sporozoite Indexes of An. gambiae s.l. and An. funestus s.l. by Geographic Area and District 56             |
|    | Annex N: Monthly Infection Rate of Vector Species (January 2019-January 2020)                                        |
|    | Annex O: Infection Rate of An. pharoensis and An. nili by Geographic Area                                            |
|    | Annex P: Entomological Inoculation Rate per night of An. gambiae s.l. Females in the Surveyed Sites                  |
|    | (January 2019-January 2020)                                                                                          |
|    | Annex Q: Entomological Inoculation Rate per night of An. funestus s.l. Females in the Different Sites                |
|    | Monitored (January 2019-January 2020)                                                                                |
|    | Annex R: Monthly Entomological Inoculation Rate of Vector Species (January 2019-January 2020)60                      |
|    | Annex S: Distribution of the An. gambiae Complex Members                                                             |
|    | Annex T: An. gambiae s.l. Species Composition in the Surveyed Districts                                              |

# ACRONYMS

| bites/person/night                          |
|---------------------------------------------|
| Centers for Diseases Control and Prevention |
| Circumsporozoite Index                      |
| Circumsporozoite Protein                    |
| Entomological Inoculation Rate              |
| Enzyme-Linked Immuno-Sorbent Assay          |
| Human Biting Rate                           |
| Human Landing Catches                       |
| infected bites /person/night                |
| Indoor Resting Density                      |
| Insecticide Resistance Monitoring           |
| Indoor Residual Spraying                    |
| Insecticide-Treated Net                     |
| Knock Down Resistance                       |
| National Malaria Control Program            |
| Piperonyl Butoxide                          |
| Plasmodium falciparum                       |
| President's Malaria Initiative              |
| Pyrethrum Spray Collection                  |
| Université Cheikh Anta Diop                 |
| World Health Organization                   |
|                                             |

# **EXECUTIVE SUMMARY**

From January 2019 to December 2019, the President's Malaria Initiative (PMI) VectorLink Senegal Project conducted entomological monitoring activities in 24 selected sentinel districts located in the five geographical zones (Sahelian, Sudano-Sahelian, Sudanese, Sudano-Guinean, Sahelo-Sudanese zones) across the country. Vector surveillance activities including vector composition, density, behavior and entomological inoculation rate (EIR), were conducted every other month in 49 village sites (about two villages per sentinel district). Additionally, annual insecticide resistance monitoring was successfully conducted in 19 of the 24 districts. The susceptibility status of *An. gambiae* s.l. populations of each district was tested against pyrethroid, carbamate, organophosphate, pyrrole and neonicotinoid insecticides. Resistance intensity and synergist assays were conducted for pyrethroids.

Nine anopheline species were found across all sites during the monitoring period with *An. gambiae* s.l. representing the main malaria vector across all sites, followed by *An. funestus* s.l. Furthermore, molecular identification of *An. gambiae* s.l. collected by human landing catches (HLC) and pyretherum spray catch (PSC) revealed the presence of four species: *An. arabiensis, An. gambiae, An. coluzzii,* and *An. melas.* Overall, *An. arabiensis* was the most abundant species in the Sahelian, Sahelo-Sudanese, and Sudano-Sahelian zones while *An. gambiae* was predominant in the Sudanese and Sudano-Guinean zones. Few hybrids *An. coluzzii/An. gambiae*, were also identified in the Sudanese and Sudano-Guinean areas.

The biting rates of *An. gambiae* s.l. were higher during the rainy season, between September 2019 and October, with the highest rates recorded in the Sudanese area (27 bites/person/night (b/p/n) and the Sudano-Guinean area (25 b/p/n) and higher indoor biting (endophagic). *An. funestus* s.l. was generally less aggressive, with a maximum biting rate of 7 b/p/n, recorded in Ndoffane (Sudan-Sahelian zone). Furthermore, both vectors were more active between 02 a.m. and 05 a.m. during the night.

An. gambiae s.l. was more anthropophilic in the Sudanese and Sudano-Guinean zones compared to the other zones. In contrast, the anthropophilic rate was lower for *An. funestus* in the Sudano-Sahelian and Sudano-Guinean zones where horses and cows were the main sources of blood meals.

Both *An. gambiae* s.l. and *An. funestus* s.l. were found positive for *P. falciparum* circumsporozoitic protein with higher proportion recorded in the Sahelian zone. However, the average entomological inoculation rate (EIR) was higher in the Sudano-Guinean zone where higher biting rate was recorded.

Susceptibility of *An. gambiae* s.l. to pirimiphos-methyl was recorded in all sites, except in Diamniadio (Sudano-Guinean zone) and resistance to the three pyrethroids tested (deltamethrin, permethrin, and alpha-cypermethrin) was observed in all sites, except in Ndoffane where the colony was susceptible to deltamethrin. Susceptibility to bendiocarb was recorded in the Sudanese and Sudano-Sahelian zones, while possible resistance occurred in the Sahelian, Sahelo-Sudanese, and Sudano-Guinean zones. Susceptibility to clothianidin (13.2 mg/paper) and chlorfenapyr (200 µg/bottle) was recorded in all sites, except for chlorfenapyr in Kedougou.

A substantial increase in mortality of *An. gambiae* s.l. when pyrethroids were pre-exposed to piperonyl butoxide (PBO) as synergist – for deltamethrin mean mortality increased from 50.1% without PBO to 94.9% with PBO; for permethrin mean mortality increased from 50.8% without PBO to 86.6% with PBO.

The knock down resistance (*kdr*) mutations (west and east) were present within *An. arabiensis*, *An. gambiae* and *An. coluzzii*. The co-occurrence of the *kdr*-west and *kdr*-east mutations was recorded in all the other districts where they were both investigated, at a relatively lower frequency in the sentinel district of the Sudanese zone. No *kdr* east was detected in the Sahelian and Sahelo-Sudanese zones and the *kdr*-west mutation characterized

was at a frequency of 0.6 among the samples tested. Moreover, the prevalence of *kdr* mutations were higher in the Sudano-Guinean zone and particularly in the urban setting of Dakar, where all the specimens tested carried one or both mutations. The *Ace*-1<sup>R</sup> mutation, was not detected in the majority of the sites except in Salementa and Saraya in the Sudano-Guinean zone were few resistance alleles were recorded.

The data collected will support the NMCP and the malaria vector control stakeholders (including PMI VectorLink) in the timing of indoor residual spraying (IRS) and in selecting and planning ITN distributions across the country.

# I. INTRODUCTION

As part of an effort to scale up vector control interventions, the Senegal National Malaria Control Program (NMCP) received support from the U.S. President's Malaria Initiative (PMI) for entomological data collections and indoor residual spraying (IRS). In 2019, PMI VectorLink Senegal conducted longitudinal entomological monitoring activities including i) routine vector surveillance every two months in 24 sentinel districts sites spread across the different geographical zones of the country and ii) annual insecticide resistance monitoring in 19 of the 24 sentinel districts where vector surveillance was conducted. The data collected aimed to support the NMCP and the malaria vector control stakeholders (including PMI VectorLink) in the timing of indoor residual spraying (IRS) programming and in planning the distribution of insecticide-treated nets (ITNs). Objectives of entomological surveillance are as follows:

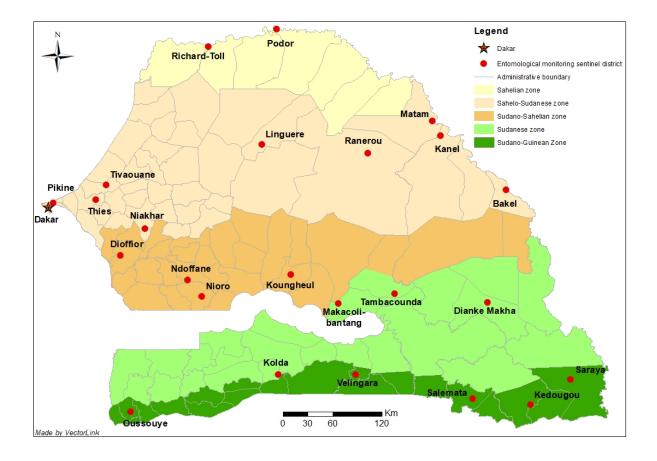
- To determine vector species composition and distribution, and vector resting and biting behavior;
- To determine the susceptibility of the natural populations of *An. gambiae* s.l. to main insecticide molecules used in vector control interventions (ITNs and IRS);
- To determine the *Plasmodium falciparum (Pf)* infection rate among the populations of the two main malaria vectors (*An. gambiae* s.l. and *An. funestus* s.l.);
- To identify the blood meal sources and preferences of the females of the different vector species at the sentinel sites.

This report summarizes the results of the entomological surveillance carried out from January to December 2019.

# 2. METHODS

# 2.1 SENTINEL DISTRICTS AND SITES<sup>1</sup>

In 2019, entomological surveillance was carried in 24 sentinel districts (Figure 1) spread across five geographical zones (Sahelian, Sahelo-Sudanese, Sudano-Sahelian, Sudanese and Sudano-Guinean zones. Two sites were selected per district to conduct vector surveillance activities with one additional site in Tivaoune to equal 49 total village sites.


The Sahelian zone covers the dry area between Saint-Louis and the River Senegal in the Northern part of the country. Ongoing desertification is happening in the area where shrubs, some baobabs and acacias are mainly found. The Sahelo-Sudanese zone is spread from Dakar to Matam and from Louga to Djourbel with dry savannah, acacias, cheese trees, baobabs representing the main trees of the area. The Sudano-Sahelian area covers from Fatick/Kaolack to Tambacounda with denser savannah, forests with sparse baobabs, cheese trees, acacias and palm trees. The Sudanese zone represents the area from Tambacounda to Ziguinchor/Kolda with very dense savannahs and forests with cheese trees, baobabs, palm trees, and casuarinas. The Sudano-Guinean zone represents the South Casamance with humid tropical forest.

Nioro and Koungheul, located in the Sudano-Sahelian zone were former IRS sites. All the districts selected for monitoring were previously entomological monitoring districts except four of them: Salemata, Saraya, Kolda, and Makacoulibantang.

Additional entomological surveillance was conducted in Diourbel, Touba, and Kaolack as part of an urban landscape analysis. These results are presented as a separate report.

FIGURE 1: GEOGRAPHICAL LOCATION OF THE SENTINEL HEALTH DISTRICTS SURVEYED DURING THE 2019 ENTOMOLOGICAL SURVEILLANCE

<sup>&</sup>lt;sup>1</sup>The 2020 PMI VectorLink Senegal IRS districts include Koungheul (Sudano-Sahelian zone), Koumpentoum and Maka Coulibanta (Sudanese zone) and Kedougou (Sudano-guinean zone) while the



The sentinel sites, entomological activities, and the frequency in each of the sentinel districts are described in the Table 1.

| TABLE 1: SENTINEL DISTRICTS AND FREQUENCY OF THE ENTOMOLOGICAL SURVEILLANCE ACTIVITIES IN |
|-------------------------------------------------------------------------------------------|
| STUDIED VILLAGES                                                                          |

| Sentinel District | Sentinel sites                               | Entomological<br>activities | Frequency           | IRS 2020<br>Districts* |  |  |  |  |
|-------------------|----------------------------------------------|-----------------------------|---------------------|------------------------|--|--|--|--|
|                   | Sahelian zone                                |                             |                     |                        |  |  |  |  |
| Richard Toll      | Mbagame and Gankette Balla                   | HLC, PSC and IRM            | Every two           |                        |  |  |  |  |
| Podor             | Ndiayene-Pendao and Niandane                 | HLC,<br>PSC and IRM         | Every two<br>months |                        |  |  |  |  |
|                   | Sahelo-Sudanese zone                         | :                           |                     |                        |  |  |  |  |
| Matam             | Sadel and Nabadji Ciwol                      | HLC,<br>PSC and IRM         |                     | IDB                    |  |  |  |  |
| Kanel             | Haoure and Dembankane                        | HLC,<br>PSC and IRM         |                     | IDB                    |  |  |  |  |
| Bakel             | Gabou and Moudery                            | HLC,<br>PSC and IRM         |                     |                        |  |  |  |  |
| Ranerou           | Oudalaye and Fourdou                         | HLC,<br>PSC and IRM         | Every two<br>months | IDB                    |  |  |  |  |
| Linguere          | Barkedji and Ouarkhokh                       | HLC,<br>PSC and IRM         |                     | IDB                    |  |  |  |  |
| Tivaoune**        | Diambalo, Ngadiaga, Thiaye, Touba<br>Tawfekh | HLC,<br>PSC and IRM         |                     |                        |  |  |  |  |
| Thies**           | Beer                                         | PSC and IRM                 |                     | IDB                    |  |  |  |  |
| Pikine            | Pikine                                       | PSC                         |                     |                        |  |  |  |  |
|                   | Sudano-Sahelian zone                         |                             |                     |                        |  |  |  |  |
| Diofior           | Palmarin FACAO, Simal                        | HLC,<br>PSC and IRM         | Every two<br>months |                        |  |  |  |  |

| Niakhar               | Kothiokh, Ngayokheme                        | HLC,<br>PSC and IRM |                     |     |
|-----------------------|---------------------------------------------|---------------------|---------------------|-----|
| Koungheul≠            | Ida Mouride, Pakala                         | HLC,<br>PSC and IRM |                     | PMI |
| Nioro≠                | Ndrame Ndimb, Bamba Diakhatou,<br>Camara    | HLC,<br>PSC and IRM |                     |     |
| Ndoffane <sup>µ</sup> | Tawa Mboudaye, Sagnaneme                    | HLC,<br>PSC and IRM |                     |     |
|                       | Sudanese zone                               |                     |                     |     |
| Makacolibantang       | Sinthiou Boure Banna Ndao, Ndoga<br>Babacar | HLC,<br>PSC and IRM |                     | PMI |
| Tambacounda           | Wassadou, Badi                              | HLC,<br>PSC and IRM | Every two<br>months |     |
| Dianke Makha          | Gouta, Soukouta                             | HLC,<br>PSC and IRM |                     |     |
|                       | Sudano-Guinean zone                         |                     |                     |     |
| Kedougou              | Tomboronkoto, Bandafassi                    | HLC,<br>PSC and IRM |                     | PMI |
| Saraya                | Bembou, MadinaDiankha                       | HLC,<br>PSC and IRM |                     |     |
| Salemata              | Diara Pont, Ethiolo                         | HLC,<br>PSC and IRM | Every two           |     |
| Velingara             | Medina Dianguette, Bonkonto                 | HLC,<br>PSC and IRM | months              |     |
| Kolda                 | MissiraDemba, Sare Oggo                     | HLC,<br>PSC and IRM |                     |     |
| Oussouye              | Mlomp, Cadjinolle                           | HLC,<br>PSC and IRM |                     |     |

Note: HLC = human landing catches, PSC = pyrethroid spray collections and IRM = insecticide resistance monitoring

\*: The districts of Tivaoune and Thies belong to the geographical area of Niayes for which five sentinel sites had been selected, four in Tivaoune and one in Thies.

\*\* Islamic Development Bank (IDB) conducting IRS in 10 districts in 2020, of these VectorLink conducted entomological monitoring activities in five.

≠: Previous IRS districts

 $\boldsymbol{\mu} {:}$  Former external control of the previous IRS districts of Nioro

The annual refresher training was organized before the starting of any field activities, and all the field technicians and students involved in the monitoring were provided an overview of standard field and laboratory operational procedures and vector surveillance objectives.

# 2.2 VECTORS POPULATION DYNAMICS

Sampling of the vector populations was done by i) hourly human landing catches (HLCs) of host-seeking mosquito females inside and outside human dwellings, and ii) pyrethrum spray collections (PSCs) for indoor resting females (endophilic) in human habitations. The different collections were completed in accordance with the VectorLink Standard Operating Procedure 02/01 for HLC and Standard Operating Procedure 03/01 for PSC (all SOPs can be find here <a href="https://pmivectorlink.org/resources/tools-and-innovations/">https://pmivectorlink.org/resources/tools-and-innovations/</a>)

| <b>Collection Method</b> | Time                   | Frequency                                                                             | Sample*            |  |
|--------------------------|------------------------|---------------------------------------------------------------------------------------|--------------------|--|
| PSC                      | 7:00 am to 10:00<br>am | Once per site per collection time point                                               | 10 houses per site |  |
| HLC                      | 8:00 pm to 6:00 am     | Two consecutive nights per<br>site per collection time<br>point; indoors and outdoors | 3 houses per site  |  |

#### TABLE 2: ADULT MOSQUITOES COLLECTIONS

\* The same rooms and houses were maintained over the survey period.

In the field, the mosquitoes collected were sorted and *Anopheles* mosquitoes were morphologically identified using identification keys (Diagne *et al.*, 1994)), then counted. A sub-sample of female *Anopheles* vectors were ovary-dissected in the field to determine the parity rate. All collected females of *Anopheles* were stored individually in numbered Eppendorf tubes containing silica gel for subsequent laboratory analysis. Table 3 describes the entomological indicators calculated using the different collection methods.

#### TABLE 3: SUMMARY OF MALARIA ENTOMOLOGICAL INDICATORS PER COLLECTION METHOD

| Collection Method | Indicator              | Definition                                 |  |  |  |
|-------------------|------------------------|--------------------------------------------|--|--|--|
|                   | Human biting rate      | Mean number of bites / person / night      |  |  |  |
|                   | (indoor and outdoor)   |                                            |  |  |  |
| HLC               | Peak biting time       | Hour with the highest human biting rate    |  |  |  |
| ПLC               | Parity rate            | Percentage of parous mosquitoes            |  |  |  |
|                   | Exophagic rate         | Percentage of mosquitoes biting outside    |  |  |  |
|                   | Endophagic rate        | Percentage of mosquitoes biting inside     |  |  |  |
| PSC               | Indoor resting density | Mean number of mosquitoes / house / day    |  |  |  |
| PSC               | % of fed females       | Number of fed mosquitoes / total collected |  |  |  |

# 2.3 WHO SUSCEPTIBILITY TEST

Susceptibility of adult *An. gambiae* s.l., the major malaria vector in Senegal, was assessed against different insecticides using the standard World Health Organization (WHO) susceptibility test kits, and CDC bottle assay procedures. Unfed adult females aged 3 to 5 days, reared from larvae collected from breeding sites within and around the sentinel sites, were used for the bioassays performed in each of the surveyed health districts. Diagnostic concentration of papers impregnated with three pyrethroids (deltamethrin 0.05%, permethrin 0.75%, alpha-cypermethrin 0.05%), an organophosphate (pirimiphos-methyl 0.25%), and a carbamate (bendiocarb 0.1%) were used to assess the susceptibility status *An. gambiae* s.l. populations at each site.

Insecticide susceptibility tests were completed following the WHO method (VectorLink Standard Operating Procedure 06/01), with the exception of tests with chlorfenapyr, which were performed using CDC bottle assays (VectorLink Standard Operating Procedure 04/01). Clothianidin (13.2 mg/paper) papers (neonicotinoid) were treated locally using the formulated product of SumiShield 50WG, 50% active ingredient, and a protocol designed by VectorLink. The susceptibility testing was conducted as described above and the mortality was recorded up to seven days post exposure.

When insecticide resistance of pyrethroids was confirmed, resistance intensity (high, moderate, and low) was also tested at five and ten times the diagnostic concentration of permethrin, deltamethrin, and alpha-cypermethrin using the WHO method (VectorLink Standard Operating Procedure 06/01).

Synergist assays with piperonyl butoxide (PBO 4%) were conducted for deltamethrin, permethrin, and alphacypermethrin according to the WHO tube test protocol (VectorLink Standard Operating Procedure 06/01) to determine the involvement of P450s in pyrethroid resistance.

Abbott's formula was used to correct the observed mortalities in the cases where the control mortality was above 5% and below 20%. The results were interpreted based on the WHO criteria (2013), as presented in Table 4.

| Status      | WHO threshold | Additional thresholds | Observations             |
|-------------|---------------|-----------------------|--------------------------|
| Susceptible | 98-100%       | 98-100%               | Susceptibility confirmed |
| Resistant   | < 98%         | 90-98%                | Resistance suspected     |
|             |               | < 90%                 | Resistance confirmed     |

TABLE 4: ANALYSIS AND INTERPRETATION OF INSECTICIDE SUSCEPTIBILITY DATA

# 2.3.1 LABORATORY ANALYSIS

#### 2.3.1.1 PLASMODIUM FALCIPARUM INFECTION RATE

The presence of *Pf* circumsporozoite protein (CSP) was characterized using the enzyme-linked immunosorbent assay (ELISA) method (Burkot et al., 1984; Wirtz et al., 1987) to determine the infection rates among host-seeking females. The sporozoite rate was calculated as the proportion (in %) of females found with the CS protein out of the total analyzed. The entomological inoculation rate (EIR) was calculated by multiplying the human biting rate by the circumsporozoite index (CSI).

#### 2.3.1.2. ORIGIN OF BLOOD MEALS

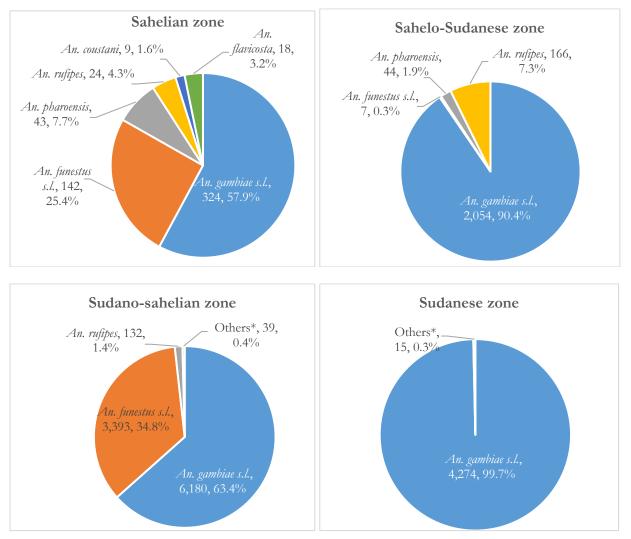
The origin of blood meals was identified using the direct ELISA method described by Beier et al. (1988) on blood-fed females collected by PSC. The anthropophilic rate was calculated as the proportion of human blood among the total blood meals determined. The same formula was applied to estimate the host preference for the alternative animal hosts. Each host identified in mixed blood meals was counted and included in the calculation of anthropophilic rates.

# 2.3.1.3. MOLECULAR IDENTIFICATION OF AN. GAMBIAE S.L. SPECIES AND CHARACTERIZATION OF TARGET SITE RESISTANCE GENES

Sub-samples of dead and alive specimens of *An. gambiae* s.l. from the susceptibility tests, and those collected by HLC and PSC, were identified to species level by polymerase chain reaction (PCR) (Wilkins et al., 2006). Moreover, the presence of both knock down resistance (*kdr*) (L1014F and L1014S) and the *Ace1* (G119S) target site mutations were screened among dead and alive specimens exposed to insecticides using the methods described by Huynh (2007) and Wilkins (2006), respectively, for the *kdr* and *Ace1*<sup>R</sup> genes.

# 2.4 STATISTICAL ANALYSES

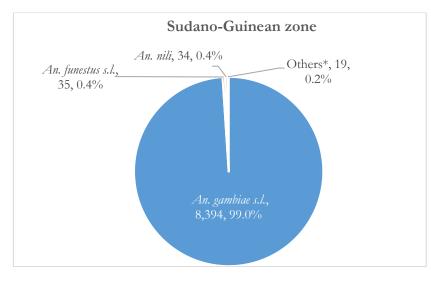
Homogeneity tests were performed to compare all the entomological parameters estimated for the two main vector species across their range of distribution, using the standard Chi-square or the exact Fisher tests where appropriate at the significance level of 0.05. The 95% confidence intervals were calculated for each Pf infection rate. Entomological inoculation rates were compared using logistic regression.


# 3. RESULTS

# 3.1 VECTOR POPULATION DYNAMICS

# 3.1.1 Species Composition

A total of 25,337 *Anopheles* mosquitoes were collected in all sentinel districts of all eco-geographical zones. The Sahelian zone recorded the lowest density with 2.2% (n=560) of the total *Anopheles* collected, followed by the Sahelo-Sudanese zone (8.9%, n=2,262), the Sudanese zone (16.9%, n=4,289), the Sudano-Guinean zone (33.7%, n=8,482), and the Sudano-Sahelian zone (38.5%, n=9,744). Overall, nine *Anopheles* species were collected during the monitoring (Table 5). Eight were found in the southern part of the country, with *An. squamosus* (Sudanese zone) and *An. nili* (Sudano-Guinean zone) found only in these areas. *An. gambiae* s.l., *An. funestus, An. pharoensis, An. rufipes,* and *An. constani* were more widespread and present in almost all the surveyed eco-geographical areas. *An. flavicosta* was recorded only in the delta of the Senegal River (in the Sahelian zone), where six out of the nine anopheline species were found.


Overall, *An. gambiae* s.l. remained the predominant vector species in all areas (Figure 2). However, the proportions of *An. gambiae* s.l. were relatively low in the Sahelian (58%) and in the Sudano-Sahelian (63%) zones, where a higher number of *An. funestus* s.l. was recorded. *An. funestus* s.l. constituted the second most prevalent species in these two areas, particularly in Nioro and Ndoffane districts, both located in the Sudano-Sahelian (Annex A).



#### FIGURE 2. ANOPHELES SPECIES COMPOSITION BY GEOGRAPHICAL ZONE

\*Other species include An. pharoensis (29), An. constani (5) and An. welcomei (5)

\*Other species include An. pharoensis (2), An. squamosus (2), An. rufipes (3), An. coustani (7) and An. nili (1)



\*Other species include *An. pharoensis* (12), *An. rufipes* (1), *An. constani* (5) and *An. welcomei* (1)

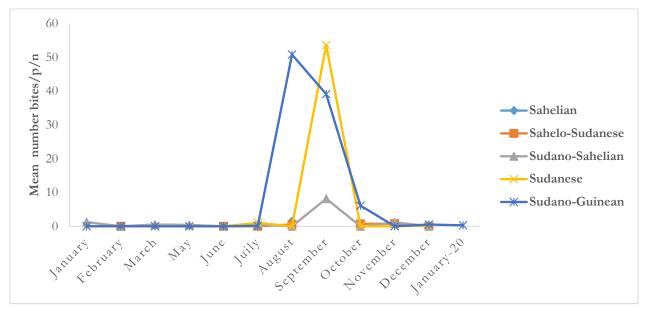
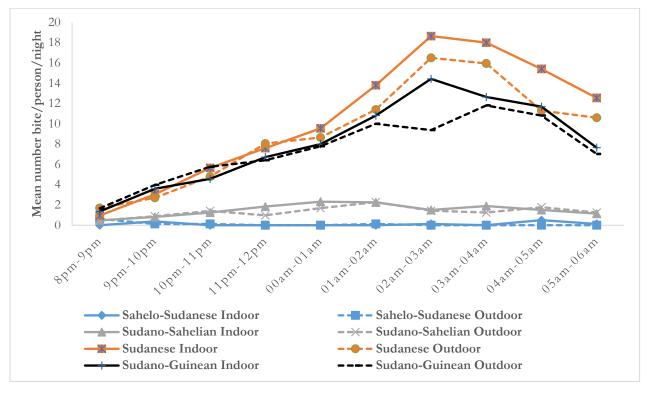
### 3.1.2 ANOPHELES GAMBIAE S.L. HUMAN BITING RATE

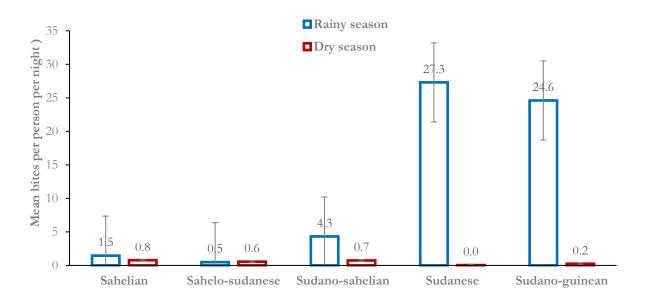
#### 3.1.2.1 ANNUAL BITING CYCLE OF AN. GAMBIAE S.L.

The mean monthly peak human biting rates (HBR) were recorded between July and October, representing the period of rains in all the geographical zones (Figure 3). The Sudanese and Sudano-Guinean zone recorded the highest peaks with more than 50 b/p/n during the period. All the other months recorded very low density with less than 1b/p/n during most of the months. Additionally, *An. gambiae* s.l. hourly peak biting was recorded between 02 a.m. and 04 a.m. in all the geographical zones with the highest densities recorded in the Sudanese and the Sudano-Guinean zones (Figure 4)

The monthly results will help timing the implementation of any vector control measures and particularly IRS.

FIGURE 3: MONTHLY VARIATIONS OF AN. GAMBIAE S.L. HUMAN BITING RATE BY GEOGRAPHICAL AREA



FIGURE 4: HOURLY AN. GAMBIAE S.L. HUMAN BITING RATE BY GEOGRAPHICAL AREA

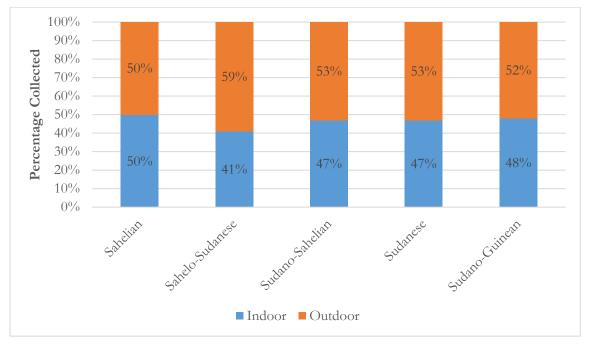


#### 3.1.2.2 SEASONAL VARIATION OF THE HUMAN BITING RATE OF AN. GAMBLAE S.L.

The mean HBRs were significantly higher in all geographical zones during the rainy season with more than 1 b/p/n except the Sahelo-Sudanese zone, where less than one bite per person-night (<1 b/p/n) was recorded during both dry and rainy season (Figure 5). The highest rates were recorded in the Sudanese (27 b/p/n) and Sudano-Guinean (25 b/p/n) areas during the rainy season while the HBR was quasi nil during the dry season in those zones. However, the HBR of all geographical zones was less than 1b/p/n during the dry period (Annex B).

FIGURE 5: SEASONAL VARIATIONS OF AN. GAMBIAE S.L. HUMAN BITING RATE BY GEOGRAPHICAL AREA




### 3.1.3 ANOPHELES GAMBIAE S.L. ENDOPHAGIC RATE

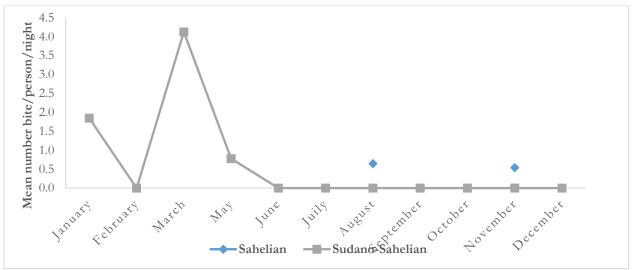
A significantly higher proportion of *An. gambiae* s.l. was collected indoors than outdoors, in all the geographical areas except in the Sahelian zone (Figure 6 & Table 6). Although the proportions of females biting indoors varied between sentinel districts and even between sentinel districts within the same geographical area.

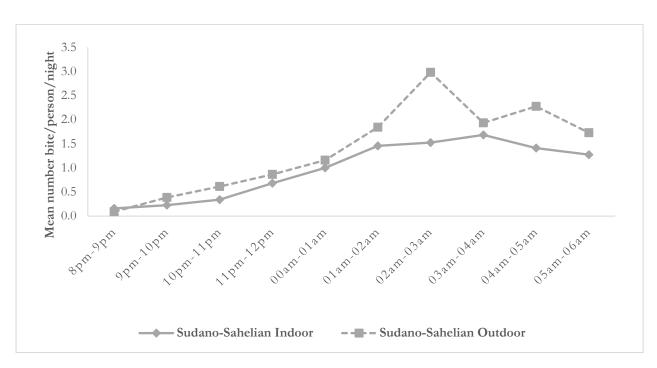
|                           | Geographical zones |                    |                    |                   |                   |       |  |
|---------------------------|--------------------|--------------------|--------------------|-------------------|-------------------|-------|--|
| Collected                 | Sahelian           | Sahelo<br>Sudanese | Sudano<br>Sahelian | Sudanese          | Sudano<br>Guinean | Total |  |
| Number collected indoors  | 54                 | 104                | 659                | 2104              | 3424              | 6345  |  |
| Number collected outdoors | 53                 | 71                 | 589                | 1933              | 3133              | 5679  |  |
| Endophagic rates          | 0.50†              | 0.59 <sup>t</sup>  | 0.53 <sup>t</sup>  | 0.53 <sup>t</sup> | 0.52 <sup>t</sup> | 0.53  |  |

| TABLE C. FEMALE AN  | CAMPAGE ENDODUN      |                |                   |
|---------------------|----------------------|----------------|-------------------|
| I ABLE D: FEMALE AN | GAMBIAE S.L. ENDOPHA | GIC RATES BY G | EOGRAPHICAL- AREA |

†no significant difference <sup>†</sup>significantly higher endophagic rate





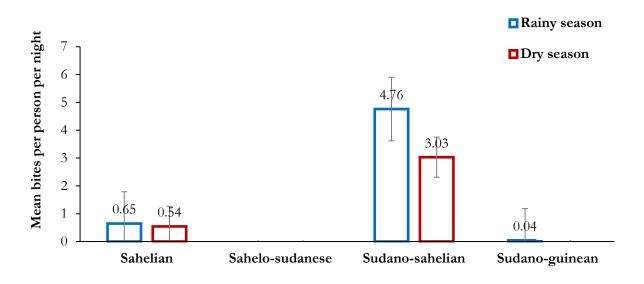


### 3.1.4 ANOPHELES FUNESTUS S.L. HUMAN BITING RATE

#### 3.1.4.1 ANNUAL BITING CYCLE OF AN. FUNESTUS S.L.

The monthly HBRs of *An. funestus* s.l. were considered for the two zones where larger number where collected during the year. The Sudano-Sahelian zone recorded the highest peak of *An. funestus* s.l. biting rates in March with an approximate mean of 4.1 b/p/n. The Sahelian zone recorded the maximum densities in August and November with less than 1b/p/n (Figure 7). The biting cycle of *An. funestus* s.l. was observed throughout the night particularly in the Sudano-Sahelian zone. The peak biting was observed between 03 a.m. to 05 a.m. both indoors and outdoors (Figure 8).








#### FIGURE 8: HOURLY AN. FUNESTUS S.L. HUMAN BITING RATE BY GEOGRAPHICAL AREA

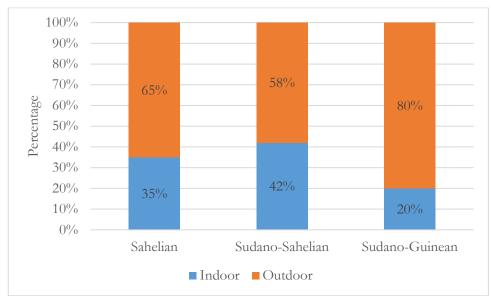
#### 3.1.4.2 SEASONAL VARIATION OF THE HUMAN BITING RATE OF AN. FUNESTUS S.L.

The mean human biting rates of *An. funestus* s.l. were <1 b/p/n in all geographical areas and seasons except the Sudano-Sahelian zone, where the highest HBR was recorded during both dry and rainy season. This was particularly achieved following the densities collected in Ndoffane (Figure 9). Any *An. funestus* s.l. was collected in the Sahelo-Sudanese zone (Annex C).

FIGURE 9: SEASONAL VARIATIONS OF AN. FUNESTUS S.L. HUMAN BITING RATE BY GEOGRAPHICAL AREA



# 3.1.5. ANOPHELES FUNESTUS S.L. ENDOPHAGIC RATE


The endophagic rate of *An. funestus* s.l. females was 0.4 in both the Sahelian and Sudano-Sahelian zones, where larger numbers were collected (Table 7). ). In the Sudano-Sahelian zone, the endophagic rates were comparable between the dry season and the rainy season (p = 0.06).

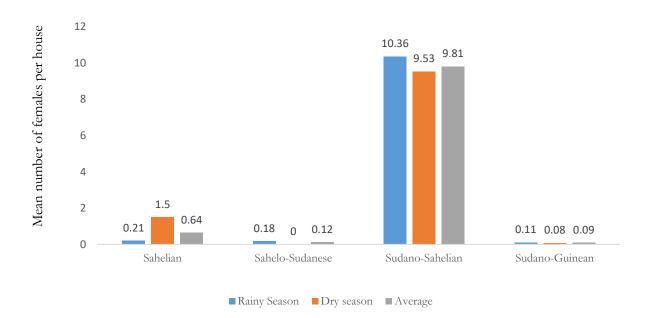
Also, in the districts where An. funestus s.l. was found, higher outdoor biting rates were recorded (Figure 10).

Collected Sahelian Sudano-Sahelian Total Number collected indoors 21 429 450 Number collected outdoors 36 610 646 Endophagic rates 0.4 0.4 0.4

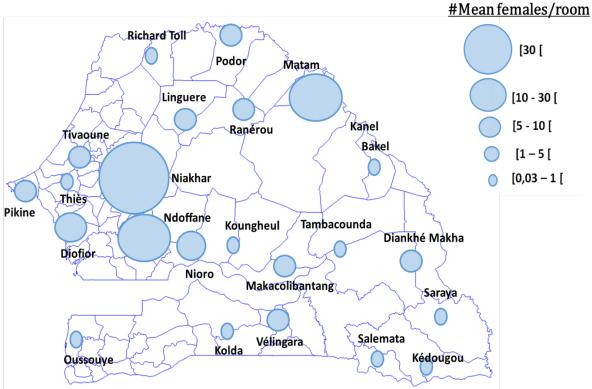
TABLE 7: ENDOPHAGIC RATE OF HOST-SEEKING OF AN. FUNESTUS S.L. BY GEOGRAPHICAL AREA

#### FIGURE 10. PROPORTION OF AN. FUNESTUS S.L. FEMALES COLLECTED INDOORS AND OUTDOORS USING HLC BY GEOGRAPHICAL ZONE




# 3.1.5 INDOOR RESTING DENSITIES AND ABDOMINAL STATUS OF FEMALES COLLECTED BY PSC

#### 3.1.5.1 AN. GAMBIAE S.L.


The highest mean *An. gambiae* s.l. indoor resting density (IRD) was recorded in Sudano–Sahelian zone and during both dry and rainy seasons (Figure 11).

However, the mean IRD was higher during the rainy season than the dry season in all the surveyed areas, except the Sahelian area where less than one female was collected per room (IRD <1 female/room (f/r)) in the rainy season (Figure 12). Additionally, the mean IRD across both seasons was less than one female per room in the Sudanese and Sudano-Guinean zones. The IRD varied from 2 f/r in the Sahelo-Sudanese zone to 4 f/r in both the Sahelian and Sudano-Sahelian zone (Annex D).





#### FIGURE 12: MEAN INDOOR RESTING DENSITY OF AN. GAMBIAE S.L. BY SENTINEL DISTRICT



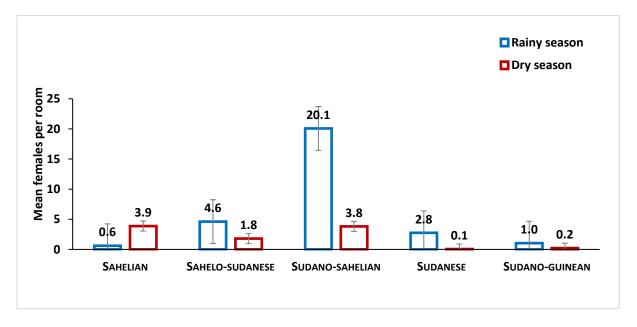



FIGURE 13: SEASONAL VARIATIONS OF AN. GAMBIAE S.L. RESTING DENSITIES BY GEOGRAPHICAL AREA

The proportion of blood-fed females found inside human dwellings (Table 8) was significantly low in the Sudanese zone in both the rainy season and the dry season (p < 0.05) compared to the other zones (Annex E). In the Sahelian regions, the proportions of blood-fed females were significantly higher during the dry season (p < 0.05), conversely to the Sahelo-Sudanese and Sudano-Sahelian zones.

| Districts             | Total |     | Unfed         |              | Blood-fed       |                | Half-gravid   |                | Gravid          |                |
|-----------------------|-------|-----|---------------|--------------|-----------------|----------------|---------------|----------------|-----------------|----------------|
| Districts             | RS    | DS  | RS            | DS           | RS              | DS             | RS            | DS             | RS              | DS             |
| Sahelian              | 62    | 155 | 4 (6.5%)      | 0%           | 34<br>(54.8%)   | 126<br>(81.3%) | 2 (3.2%)      | 0%             | 22<br>(35.5%)   | 29<br>(18.7%)  |
| Sahelo-<br>Sudanese   | 1482  | 374 | 29<br>(2.0%)  | 0%           | 999<br>(67.4%)  | 291<br>(77.8%) | 75<br>(5.1%)  | 4 (1.1%)       | 380<br>(25.6%)  | 79<br>(21.1%)  |
| Sudano-<br>Sahelian   | 4015  | 917 | 337<br>(8.4%) | 41<br>(4.5%) | 2232<br>(55.6%) | 550<br>(60.0%) | 334<br>(8.3%) | 156<br>(17.0%) | 1112<br>(27.7%) | 170<br>(18.5%) |
| Sudanese <sup>†</sup> | 330   | 7   | 26<br>(7.9%)  | 0%           | 124<br>(37.6%)  | 2<br>(28.6%)   | 87<br>(26.4%) | 4<br>(57.1%)   | 93<br>(28.2%)   | 1 (14.3%)      |
| Sudano-<br>Guinean    | 228   | 42  | 12<br>(5.3%)  | 6<br>(14.3%) | 155<br>(68.0%)  | 22<br>(52.4%)  | 3 (1.3%)      | 4 (9.5%)       | 58<br>(25.4%)   | 10<br>(23.8%)  |

TABLE 8: THE ABDOMINAL STATUS OF INDOOR RESTING FEMALES OF AN. GAMBIAE S.L. BY GEOGRAPHICAL AREA

Note: RS = rainy season, DS = dry season

\* proportion of blood-fed females significantly lower than in other areas

#### 3.1.5.2 AN. FUNESTUS S.L.

The highest *An. funestus* s.l. average IRD was found in the Sudano-Sahelian zone with particularly higher density collected in the site of Nioro (13 f/r) (Figure 14). Additionally, the IRD was relatively higher during the rainy season (Figure 15) than the dry season in the Sudano-Sahelian zone.

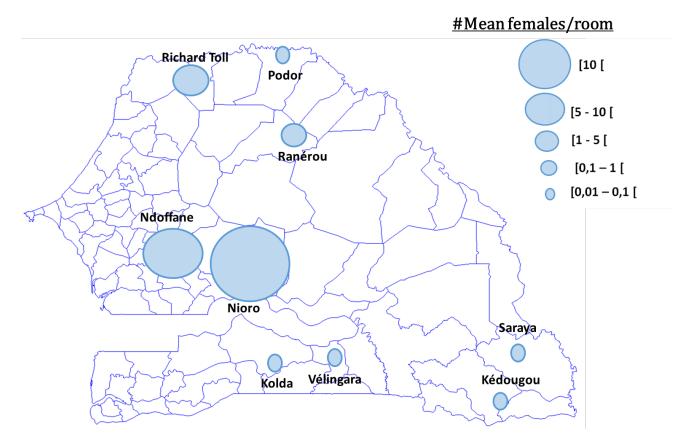
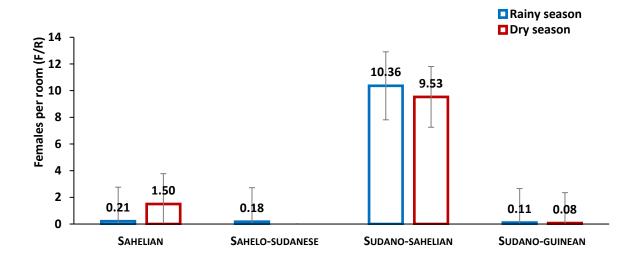




FIGURE 14: INDOOR RESTING DENSITY OF AN. FUNESTUS S.L. FEMALES BY DISTRICT

FIGURE 15: SEASONAL VARIATIONS OF AN. FUNESTUS S.L. INDOOR RESTING DENSITIES BY GEOGRAPHICAL AREA

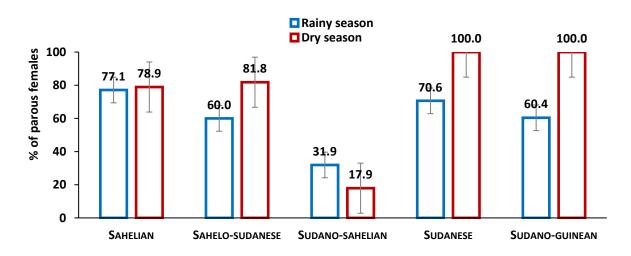


The proportion of blood-fed females was significantly lower in the Sudano-Sahelian zone than in other zones, both during the dry season (p = 0.02) and the rainy season (p = 0.04) (Table 9). In contrast, there was no significant seasonal variation in the proportion of blood-fed *An. funestus* s.l. females collected through PSC, no matter the sentinel district where they were found (e.g., Sahelian: p = 0.8; Sudano-Sahelian: p = 0.3 and Sudano-Guinean: p = 0.6).

| Zone                 | Total |      | Unfed        |               | Blood-fed      |                | Half-gravid    |                | Gravid         |                |
|----------------------|-------|------|--------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                      | RS    | DS   | RS           | DS            | RS             | DS             | RS             | DS             | RS             | DS             |
| Sahelian             | 17    | 60   | 0%           | 1<br>(1.7%)   | 12<br>(70.6%)  | 44<br>(73.3%)  | 3<br>(17.6%)   | 3<br>(5.0%)    | 2<br>(11.7%)   | 12<br>(20.0%)  |
| Sudano-<br>Sahelian† | 829   | 1525 | 59<br>(7.1%) | 139<br>(9.1%) | 485<br>(58.5%) | 862<br>(56.5%) | 141<br>(17.0%) | 205<br>(13.4%) | 144<br>(17.4%) | 319<br>(20.9%) |
| Sudano-<br>Guinean   | 18    | 12   | 1<br>(5.6%)  | 3<br>(25.0%)  | 15<br>(83.3%)  | 9<br>(75.0%)   | 1<br>(5.6%)    | 0%             | 1<br>(5.6%)    | 0%             |

TABLE 9: THE ABDOMINAL STATUS OF INDOOR RESTING FEMALES OF AN. FUNESTUS BY GEOGRAPHICAL AREA

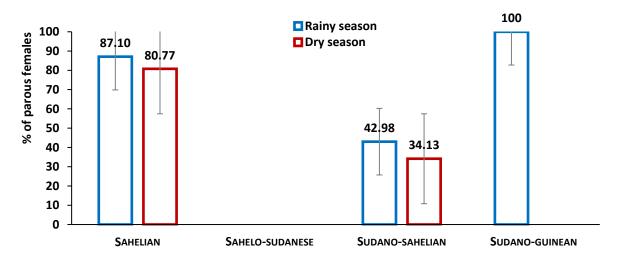
Note: RS = rainy season, DS = dry season


† proportion of blood-fed females significantly lower than in other areas

# 3.1.6 PARITY RATE

#### 3.1.6.1 AN. GAMBIAE S.L.

The mean parity rate of female *An. gambiae* s.l. in both the rainy and dry seasons was significantly high in all the geographical zones except in the Sudano-Sahelian area. The mean parity rates were above 60% in all those sites. The mean parity rate was higher during the dry season, except in the Sudano-Sahelian zone (Figure 16 and the Annex G) showing that the females collected were particularly old.


FIGURE 16: SEASONAL VARIATIONS OF AN. GAMBIAE S.L. PARITY RATE BY GEOGRAPHICAL AREA



#### 3.1.6.2. AN. FUNESTUS S.L.

The mean parity rate of the female *An. funestus* s.l. was significantly high in the Sahelian zone (p < 0.005). It was lower in the Sudano-Sahelian zone than in the Sahel, during both the rainy and the dry seasons (Figure 17, Annex I).

#### FIGURE 17: SEASONAL VARIATIONS OF AN. FUNESTUS S.L. PARITY RATE BY GEOGRAPHICAL AREA



# **3.2** MALARIA VECTOR SUSCEPTIBILITY TO INSECTICIDES

WHO insecticide susceptibility tests were carried out only against *An. gambiae* s.l., the main vector species collected in all the surveyed sites. CDC bottle assays were also conducted in selected sites using chlorfenapyr insecticide. Annex H presents the insecticide susceptibility testing activities carried out, by district.

# 3.2.1 WHO INSECTICIDE SUSCEPTIBILITY TEST

The insecticide susceptibility test using the WHO method revealed that natural populations of *An. gambiae* s.l. were resistant to all the three pyrethroids tested (deltamethrin, permethrin, and alpha-cypermethrin) in almost all the sentinel districts, except Nioro (in the Sudan-Sahelian zone), where t susceptibility to deltamethrin was recorded (Figure 18). *An. gambiae* s.l. were susceptible to pirimiphos-methyl at all sites surveyed, except in Rufisque (Sahelo-Sudanese zone) where the vector populations showed probable resistance to the insecticide (Figure 19, Annex J1-J2).

In the Sudano-Sahelian and Sahelo-Sudanese zones, the vast majority of the populations of *An. gambiae* s.l. were susceptible to bendiocarb (Figure 19). Only the populations tested in Diamniadio (Sahelo-Sudanese zone) and Kaolack (Sudano-Sahelian) were likely resistant to bendiocarb.

Possible resistance to bendiocarb was also recorded in Podor (Sahelian zone) and in the three districts in Matam region in the Sahelo-Sudanese zone. In the Sudano-Guinean zone, *An. gambiae* s.l. populations from Kedougou and Velingara were, respectively, susceptible and resistant to bendiocarb (Figure 19). Those from Kolda and Oussouye showed probable resistance to bendiocarb.

### 3.2.2 INTENSITY OF RESISTANCE TO PYRETHROIDS

High resistance intensity to deltamethrin was observed in most of the sentinel districts of each geographical zone (Figure 18 and Annex J2). The intensity was variable for alpha-cypermethrin and permethrin (moderate or high) across the districts. This shows that the effectiveness of all vector control measures using pyrethroid insecticides only could be threatened by the resistance of the local population of malaria vectors.

# 3.2.3 TESTS WITH SYNERGISTS

In all sentinel districts, the pre-exposure of population to PBO (a synergist) increased the mortality rate of resistant females to the three pyrethroids, particularly for deltamethrin and permethrin (Figure 20) and could therefore support any deployment of PBO incorporated ITNS where substantial increment of the mortality was observed.

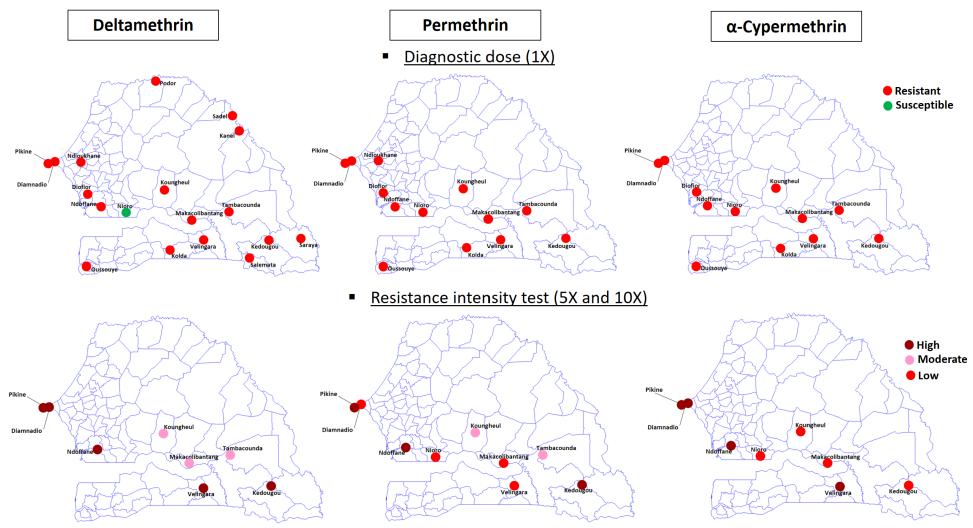



FIGURE 18: RESISTANCE STATUS AND INTENSITY OF THE RESISTANCE OF AN. GAMBIAE S.L. POPULATIONS EXPOSED TO PYRETHROIDS

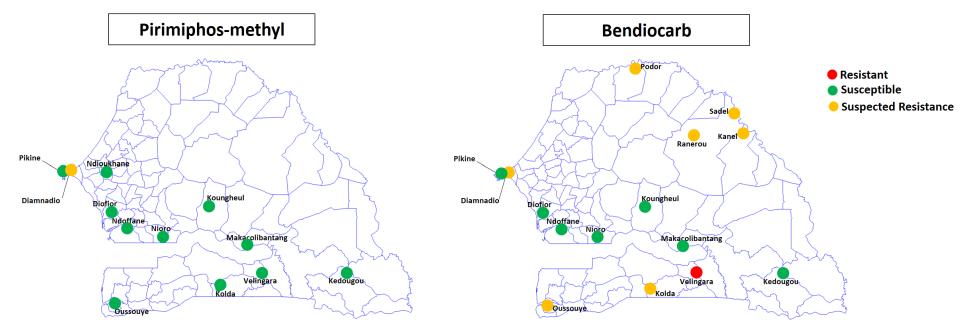
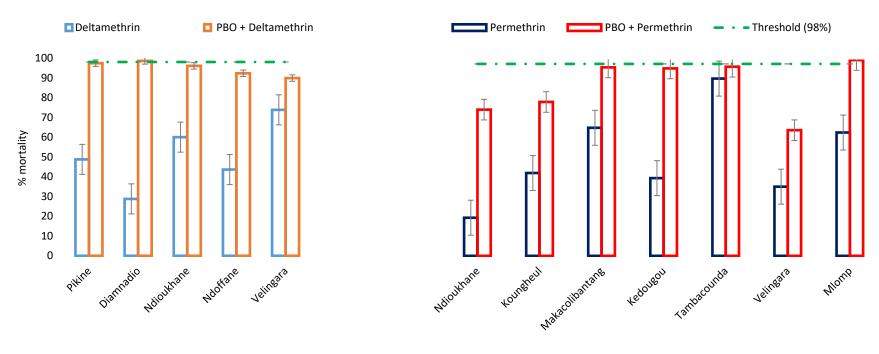
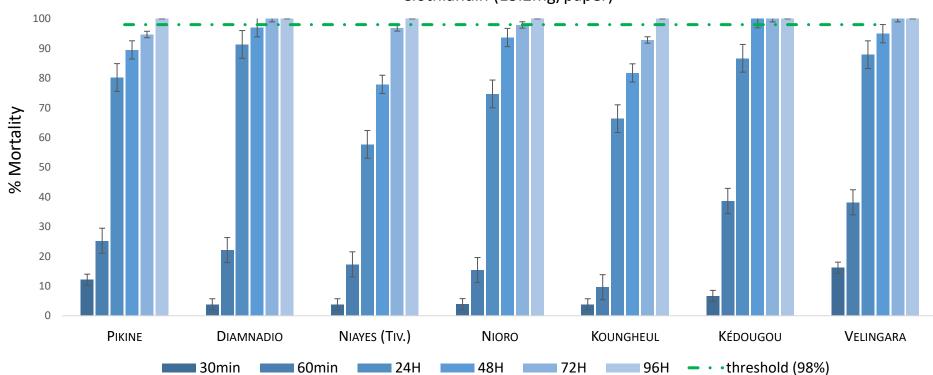




FIGURE 19: RESISTANCE STATUS OF AN. GAMBIAE S.L. POPULATIONS TO THE PIRIMIPHOS-METHYL AND BENDIOCARB

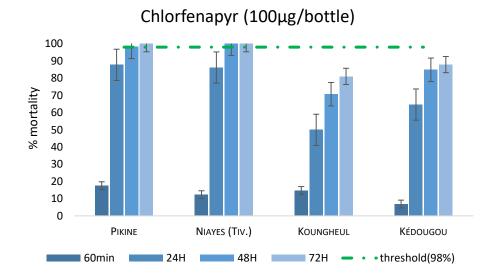


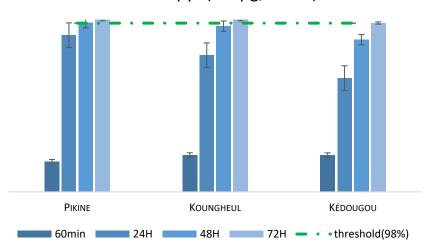
#### FIGURE 20: MORTALITY RATE OF AN. GAMBIAE S.L. EXPOSED TO THE DELTAMETHRIN AND PERMETHRIN BEFORE AND AFTER PRE-EXPOSURE TO PBO


# 3.2.4 SUSCEPTIBILITY OF AN. GAMBIAE S.L. TO CLOTHIANIDIN

With 100% of mortality reached before the end of the seventh day post exposure, the populations of *An. gambiae* s.l. were susceptible to clothianidin in all sites where the tests were conducted (Figure 21).

# 3.2.5 SUSCEPTIBILITY OF AN. GAMBIAE S.L. TO CHLORFENAPYR


All the tested populations of An. gambiae s.l. were resistant to chlorfenapyr after three days at the lowest dose tested (100µg/bottle) (Figure 22), while only An. gambiae s.l. populations from Koungheul and Kedougou remained resistant at the highest dose of 200µg/bottle.


#### FIGURE 21: SUSCEPTIBILITY OF AN. GAMBIAE S.L. POPULATIONS TO CLOTHIANIDIN BY DISTRICT



Clothiandin (13.2mg/paper)

#### FIGURE 22: SUSCEPTIBILITY OF AN. GAMBIAE S.L. POPULATIONS TO CHLORFENAPYR BY DISTRICT





Chlorfenapyr (200µg/bottle)

# 3.3 LABORATORY ANALYSIS

### 3.3.1 ORIGIN OF BLOOD MEALS

The trophic profile of endophilic female *An. gambiae* s.l. by geographical areas is shown in Figure 23 and Annexes K and L. In the Sudanese and Sudano-Guinean zones, female *An. gambiae* s.l. fed mainly on humans, with respective anthropophilic rates of 62% (74/119) and 77% (96/125). The mean anthropophilic rate was significantly lower in the Sahelian (36%; 9/25), Sahelo-Sudanese (33%; 59/181), and Sudano-Sahelian (18%; 67/381) zones (p < 0.05).

In the Sahelian zone, horses (28%; 7/25) and cows (20%; 5/25) were the main alternative animals host for *An. gambiae* s.l. females. In the Sudano-Sahelian zone, it was the horse (80%: 306/381).

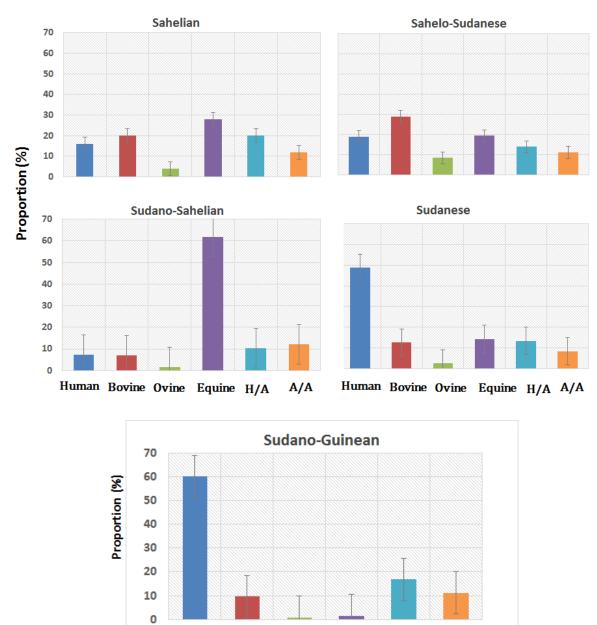



FIGURE 23: BLOOD MEAL SOURCES OF AN. GAMBIAE S.L. BY GEOGRAPHICAL AREA

Note: H/A: mixed human-animal; A/A.: mixed animal-animal

H/A A/A

Human Bovine Ovine Equine

The anthropophilic rate of endophilic females of *An. funestus* s.l. was significantly higher (p <0.05) in the Sahelian zone (83%: 10/12) than in the Sudano-Sahelian zone (22%: 67/306), and all the females collected in the Sudanese-Guinean zone fed on animals (0/11). Cows (54%: 6/11) and horses (45%: 137/306) were the main animal hosts for *An. funestus* s.l. in the Sudano-Guinean and the Sudano-Sahelian zones, respectively (Figure 24 and Annex M).

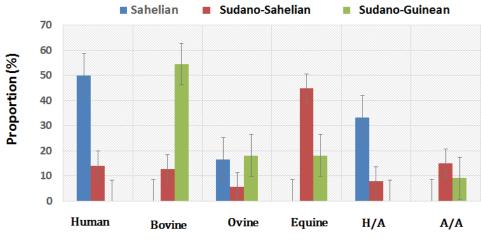



FIGURE 24: BLOOD MEAL SOURCES OF AN. FUNESTUS S.L. FEMALES BY GEOGRAPHIC AREA

Note: H/A: mixed human-animal; A/A.: mixed animal-animal

### 3.3.2 PLASMODIUM FALCIPARUM INFECTION RATE OF VECTOR POPULATIONS

Table 14 describes the *Pf* infection rates (or sporozoite rates (SR) of *An. gambiae* s.l. and *An. funestus* s.l. females collected using HLCs. The *Pf* infection rates varied by geographical areas, with highest rate of infected *An. gambiae* s.l. females in the Sahelian and Sahelo-Sudanese zones (p < 0.05). No difference was observed between the sporozoite infection rate of *An. funestus* s.l. was recorded in the Sahelian (3.1%: 2/63) and the Sudano-Sahelian (0.9%: 3/339) zones representing the two sites where larger number of *An. funestus* s.l. was collected ((P = 0.375).

| Casarahiantaana   | An.    | gambiae s. | .1.   | An. funestus s.l. |          |       |  |
|-------------------|--------|------------|-------|-------------------|----------|-------|--|
| Geographical zone | Tested | Positive   | SR†   | Tested            | Positive | SR    |  |
| Sahelian          | 107    | 3          | 0.028 | 63                | 2        | 0.031 |  |
| Sahelo-Sudanese   | 191    | 7          | 0.037 | 0                 | 0        | 0     |  |
| Sudano-Sahelian   | 356    | 0          | 0     | 339               | 3        | 0.009 |  |
| Sudanese          | 245    | 5          | 0.020 | 0                 | 0        | 0     |  |
| Sudano-Guinean    | 547    | 15         | 0.027 | 0                 | 0        | 0     |  |

† Significant difference

Infected females of *An. gambiae* s.l. were found in all the surveyed geographical areas, except the Sudano-Sahelian zone, where no infected female was recorded out of the 356 mosquitoes analyzed (Annex N). The highest CSP rate was found in the Sahelo-Sudanese zone (3.7%). Infected females of *An. funestus* s.l. were found in the Sahelian and Sudano-Sahelian zones, the only sites where tests were performed.

Infected *An. gambiae* s.l. females were found from July to December in the Sudanese and Sudano-Guinean zones (Annex O). *An. funestus* s.l. infected females were found during the end of the rainy season (November) and in the middle of the dry season (March-May). None of the female *An. pharoensis* and *An. nili* that were tested was found infected (Annex P).

# 3.3.3 ENTOMOLOGICAL INOCULATION RATE

The average EIR of *An. gambiae* s.l. varied by zone, with the lowest EIR recorded in the Sahelian zone (0.021 infected bites per person per night (ib/p/n)) and the highest recorded in the Sudano-Guinean zone (0.35 ib/p/n (p > 0.05) (Table 15). At the district level, the highest EIR was recorded in the district of Kedougou (0.64 ib/p/n) (Figure 18 and Annex Q-R). Monthly values of EIR are presented in annex S.

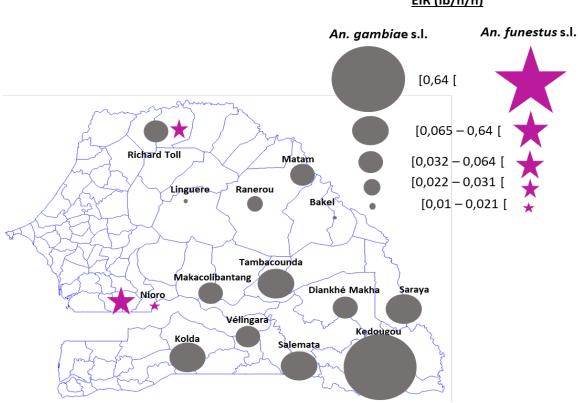

| Coordination      | Ar    | n. gambiae | s.1.  | An. funestus |       |       |  |
|-------------------|-------|------------|-------|--------------|-------|-------|--|
| Geographical zone | HBR   | SR         | EIR   | HBR          | SR    | EIR   |  |
| Sahelian          | 0.74  | 0.029      | 0.021 | 0.744        | 0.034 | 0.025 |  |
| Sahelo-Sudanese   | 0.616 | 0.037      | 0.023 | -            | -     | -     |  |
| Sudano-Sahelian   | 2.36  | 0          | 0     | 1.967        | 0.009 | 0.017 |  |
| Sudanese          | 16.4  | 0.02       | 0.33  | -            | -     | -     |  |
| Sudano-Guinean    | 12.9  | 0.03       | 0.35  | -            | -     | -     |  |

TABLE 15: ENTOMOLOGICAL INOCULATION RATE (EIR) OF AN. GAMBIAE S.L. AND AN. FUNESTUS S.L. FEMALES BY GEOGRAPHIC AREA

Note: BR = biting rate; CSI = circumsporozoite index; EIR = entomological inoculation rate

Infected *An. funestus* s.l. were collected in Richard Toll district, but the highest EIR was recorded in Ndoffane (Figure 25 and Annex R). Although the EIR has increased in the Sahelian zone (Richard Toll district) and Sahelo-Sudanese zone (Matam and Ranerou districts) compared to the data collected in 2018, the transmission risk remains mostly in the southeastern part of the country (Sudanese and Sudano-Guinean zones), especially in the regions of Kolda, Tambacounda, and Kedougou.





#### EIR (ib/h/n)

### 3.3.4 SPECIES COMPOSITION OF THE GAMBIAE COMPLEX

Figure 26 presents the proportions of the different members of the *An. gambiae* complex across the geographical areas surveyed. Overall, *An. arabiensis* was the most abundant species in the Sahelian, Sahelo-Sudanese, and Sudano-Sahelian zones, in the proportions, of 97.33%; 98.35%, and 96.01, respectively. In the Sudanese and Sudano-Guinean zones, *An. gambiae* was predominant (Figure 26 and Annex T).

Figure 27 presents the composition and distribution of the species of the *An. gambiae* complex by district. The presence of *An. melas* was recorded only in the Sudano-Sahelian zone, where six females were collected in Ndoffane (Annex U).

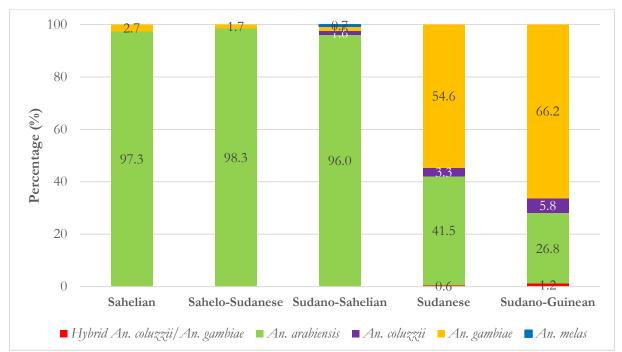
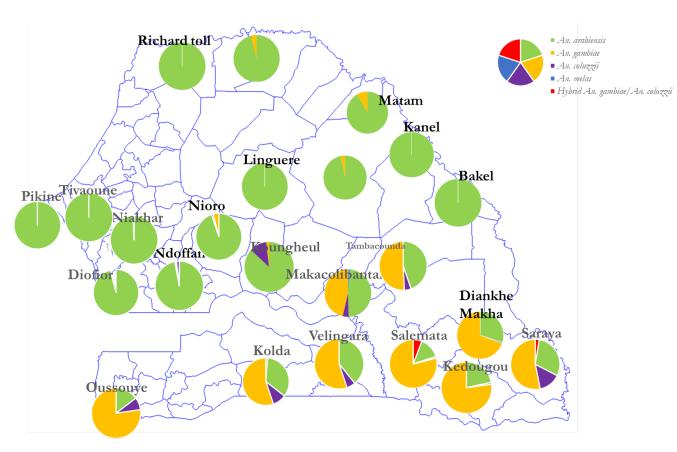




FIGURE 26: SPECIES COMPOSITION WITHIN THE AN. GAMBIAE COMPLEX BY GEOGRAPHICAL AREA



# FIGURE 27: SPECIES COMPOSITION AND DISTRIBUTION OF AN. GAMBIAE COMPLEX SPECIES BY DISTRICT

# 3.3.5 MOLECULAR CHARACTERIZATION OF TARGET SITE RESISTANCE MUTATIONS (*KDR* AND ACE 1) IN *AN. GAMBIAE* S.L.

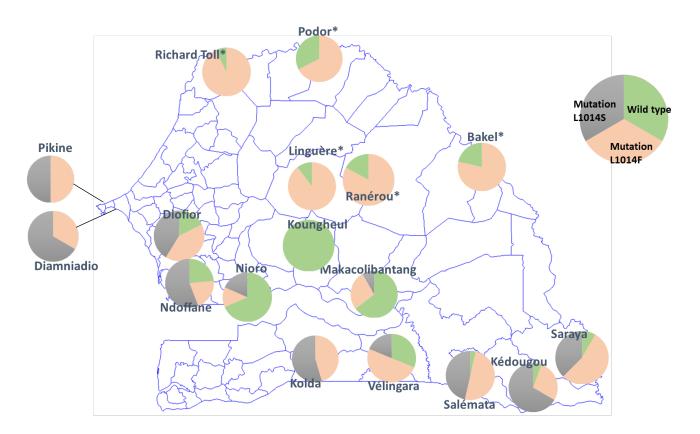
Both the *kdr*-west and *kdr*-east, conferring cross-resistance to pyrethroids and DDT, and the  $Ace 1^{R}$  mutation, conferring cross-resistance to carbamates and organophosphates, were investigated for An. *gambiae* s.l. populations.

# 3.3.6 KDR MUTATIONS

#### ALLELIC FREQUENCIES

Table 16 and Figure 28 show the allelic frequencies of the *kdr*-west and *kdr*-east mutations for *An. gambiae* s.l. populations in the different districts monitored.

For both districts in the Sahelian zone (Richard Toll and Podor) and some districts in the Sahelo-Sudanese zone (Matam, Kanel, Bakel, Ranerou, and Linguere), only the *kdr*-west mutation was screened in both *Anopheles* collected in HLCs and PSCs. The mutation was found in all the sentinel sites, with allelic frequencies of more than 60% (Table 16).


In other districts, where both *kdr*-west and *kdr*-east were investigated, results showed the involvement of both mechanisms in the resistance of the *An. gambiae* s.l. populations in all the sentinel districts, except in Koungheul, where they were both absent among the populations tested (Table 16).

Overall, the presence of the *kdr*-west mutation was high in the district of Richard Toll (92.86%), while the *kdr*-east mutation was high in the districts of Kedougou (66.67%) and Diamniadio (66.67%).

The resistant heterozygous genotype involving both *kdr*-west and *kdr*-east was mostly frequent in the Sudanese zone, particularly in Salemata, where 26 out of the 28 screened carried both *kdr* alleles.

The absence of the susceptible wide-type allele in the urban *An. gambiae* s.l. populations of Dakar and Diamniadio suggests a high insecticide selection pressure, which should be further investigated.

FIGURE 28: ALLELIC FREQUENCIES OF KDR MUTATIONS IN AN. GAMBIAE S.L. POPULATIONS BY DISTRICT



\*Only L1014F (kdr-west) was investigated

| Coordination      | District        | N  |    |     |     | Genotypes |      |      | Allelic Frequency (%) |    |    |  |
|-------------------|-----------------|----|----|-----|-----|-----------|------|------|-----------------------|----|----|--|
| Geographical zone | District        |    | SS | SRw | SRe | RwRw      | ReRw | ReRe | S                     | Rw | Re |  |
| Sahelian          | Richard Toll    | 42 | 3  | -   | -   | 39        | -    | -    | 3                     | 93 | -  |  |
| Sanenan           | Podor           | 56 | 17 | -   | -   | 39        | -    | -    | 24                    | 70 | -  |  |
|                   | Bakel           | 46 | 10 | -   | -   | 36        | -    | -    | 13                    | 78 | -  |  |
|                   | Kanel           | 10 | 1  | -   | -   | 9         | -    | -    | 1                     | 90 | -  |  |
|                   | Linguere        | 46 | 5  | -   | -   | 41        | -    | -    | 6                     | 89 | -  |  |
| Sahelo-Sudanese   | Matam           | 50 | 2  | -   | -   | 48        | -    | -    | 2                     | 96 | -  |  |
|                   | Ranerou         | 44 | 8  | -   | -   | 36        | -    | -    | 9                     | 86 | -  |  |
|                   | Pikine          | 15 | 0  | 0   | 0   | 0         | 15   | 0    | 0                     | 50 | 50 |  |
|                   | Diamnadio       | 24 | 0  | 0   | 0   | 2         | 12   | 10   | 0                     | 33 | 67 |  |
|                   | Diofior         | 17 | 3  | 0   | 0   | 2         | 10   | 2    | 18                    | 41 | 41 |  |
| Sudano-Sahelian   | Ndoffane        | 17 | 4  | 0   | 0   | 0         | 7    | 6    | 24                    | 21 | 56 |  |
| Sudano-Sanenan    | Nioro           | 19 | 13 | 0   | 0   | 0         | 5    | 1    | 68                    | 13 | 18 |  |
|                   | Koungheul       | 15 | 15 | 0   | 0   | 0         | 0    | 0    | 100                   | 0  | 0  |  |
| Sudanese          | Makacolibantang | 24 | 8  | 12  | 3   | 0         | 1    | 0    | 65                    | 27 | 8  |  |
|                   | Saraya          | 12 | 1  | 0   | 0   | 3         | 7    | 1    | 8                     | 54 | 38 |  |
|                   | Salemata        | 28 | 1  | 0   | 0   | 1         | 26   | 0    | 4                     | 50 | 46 |  |
| Sudano-Guinean    | Kedougou        | 18 | 1  | 0   | 0   | 3         | 4    | 10   | 6                     | 28 | 67 |  |
|                   | Velingara       | 8  | 2  | 0   | 1   | 3         | 2    | 0    | 31                    | 50 | 19 |  |
|                   | Kolda           | 22 | 0  | 0   | 0   | 7         | 6    | 9    | 0                     | 45 | 55 |  |

TABLE 16: GENOTYPIC AND ALLELIC FREQUENCIES OF KDR-WEST AND KDR-EAST MUTATIONS IN AN. GAMBIAE S.L. BY DISTRICT

### GENOTYPIC PREVALENCE OF KDR MUTATIONS ACCORDING TO THE MOSQUITO PHENOTYPIC STATUS (ALIVE VS DEAD)

The genotyping of the *An. gambiae* s.l. specimen collected from breeding sites from 12 sentinel districts, revealed the presence of both *kdr* mutations among dead and surviving (alive) specimen after exposure to insecticides (Table 17). However, no significant difference was observed in genotypic prevalence of the *kdr* mutations between the surviving and dead mosquitoes. Therefore, additional studies are needed to further assess the involvement of other potential resistance mechanisms in phenotypic resistant of *An. gambiae* s.l. populations.

#### KDR MUTATION GENOTYPIC PREVALENCE BY SPECIES

The molecular identification of the specimens of the *An. gambiae* s.l. exposed to insecticides revealed the presence of both mutations, *kdr*-west and *kdr*-east, in all three species of the *An. gambiae* complex identified as *An. arabiensis*, *An. gambiae*, and *An. coluzzii* (Table 18). Of these, *An. arabiensis* had the highest prevalence of resistant homozygous (RR) and heterozygous (RS) genotypes for both *kdr* mutations, particularly in the urban districts of Pikine and Diamniadio, near Dakar. Nevertheless, in the southern part of the country (Sudanese and Sudano-Guinean zones), *An. gambiae* had the highest prevalence of homozygote RR.

| C 1 1        | Constant.             |        |    |    |               |    | Gen   | otype |    |               |    |       |  |
|--------------|-----------------------|--------|----|----|---------------|----|-------|-------|----|---------------|----|-------|--|
| Geographical | Sentinel<br>Districts | Status |    | Kd | ' <b>r-</b> w |    | P-    |       | Ka | l <i>r</i> -e |    | P-    |  |
| zone         | Districts             |        | Ν  | SS | RS            | RR | value | Ν     | SS | RS            | RR | value |  |
|              | Pikine                | Dead   | 13 | 0  | 0             | 13 | 1     | 6     | 0  | 0             | 6  | 1     |  |
| Sahelo-      | Fikille               | Alive  | 14 | 0  | 0             | 14 | 1     | 11    | 0  | 0             | 11 | 1     |  |
| Sudanese     | Diamnadio             | Dead   | 8  | 0  | 2             | 6  | 0.95  | 15    | 0  | 0             | 15 | 1     |  |
|              | Diaminadio            | Alive  | 10 | 0  | 0             | 10 | 0.75  | 13    | 0  | 0             | 13 | 1     |  |
|              | Diofor                | Dead   | 14 | 7  | 1             | 6  | 0.32  | 14    | 6  | 3             | 5  | 0.375 |  |
|              | Dioloi                | Alive  | 14 | 3  | 1             | 10 | 0.52  | 14    | 3  | 2             | 9  | 0.375 |  |
|              | Ndoffane              | Dead   | 7  | 4  | 1             | 2  | 0.826 | 14    | 5  | 0             | 9  | 1     |  |
| Sudano-      | INCOLLAR              | Alive  | 13 | 6  | 1             | 6  | 0.020 | 15    | 5  | 1             | 9  | 1     |  |
| Sahelian     | Nioro                 | Dead   | 26 | 20 | 0             | 6  | 0.283 | 28    | 17 | 1             | 10 | 1     |  |
|              | Koungheul             | Alive  | 2  | 0  | 0             | 2  | 0.265 | 2     | 1  | 0             | 1  | 1     |  |
|              |                       | Dead   | 14 | 13 | 0             | 1  | 1     | 14    | 10 | 0             | 4  | 1     |  |
|              | Koungneui             | Alive  | 14 | 13 | 1             | 0  | 1     | 14    | 11 | 0             | 3  | 1     |  |
| Sudanese     | Makacolibantang       | Dead   | 14 | 8  | 5             | 1  | 0.539 | 15    | 12 | 3             | 0  | 1     |  |
| Sucianese    | Wakacolibalitalig     | Alive  | 15 | 5  | 9             | 1  | 0.339 | 15    | 11 | 3             | 1  |       |  |
|              | Saraya                | Dead   | 8  | 3  | 0             | 5  | 0.765 | 5     | 4  | 0             | 1  | 0.007 |  |
|              | Salaya                | Alive  | 14 | 3  | 1             | 10 | 0.705 | 8     | 0  | 1             | 7  | 0.007 |  |
|              | Salemata              | Dead   | 9  | 1  | 0             | 8  | 0.31  | 9     | 1  | 0             | 8  | 0.548 |  |
|              | Salemata              | Alive  | 20 | 0  | 0             | 20 | 0.51  | 19    | 0  | 1             | 18 | 0.340 |  |
| Sudano-      | Kadougou              | Dead   | 8  | 3  | 2             | 3  | 0.827 | 14    | 4  | 1             | 9  | 0.66  |  |
| Guinean      | Kedougou              | Alive  | 9  | 2  | 2             | 5  | 0.027 | 11    | 1  | 1             | 9  | 0.00  |  |
|              |                       | Dead   | 10 | 2  | 0             | 8  | 0.777 | 5     | 3  | 0             | 2  | 1     |  |
|              | vemigara              | Alive  | 9  | 2  | 1             | 6  | 0.777 | 4     | 2  | 1             | 1  | 1     |  |
|              | Kolda                 | Dead   | 8  | 1  | 0             | 7  | 1     | 11    | 1  | 0             | 10 | 0.423 |  |
|              | Noida                 | Alive  | 11 | 1  | 0             | 10 | 1     | 5     | 0  | 0             | 5  | 0.423 |  |

TABLE 17: GENOTYPIC PREVALENCE OF *KDR*-WEST AND *KDR*-EAST MUTATIONS ACCORDING TO THE PHENOTYPIC STATUS OF *AN. GAMBIAE* S.L. FEMALES AFTER BEING EXPOSED TO INSECTICIDES

Note: N = Number tested; RR, RS, and SS represent the different genotypes with R corresponding to the resistant mutant allele (either for the *kdr*-west or kdr-east) and S to the susceptible wild type allele.

| C 1.                  | C                     |                | Genotypes |    |      |    |         |    |    |               |     |         |  |
|-----------------------|-----------------------|----------------|-----------|----|------|----|---------|----|----|---------------|-----|---------|--|
| Geographi<br>cal zine | Sentinel<br>Districts | Species        |           | Kd | 'r-w |    |         |    |    | l <b>r</b> -e |     | D 1     |  |
| cai zine              | Districts             |                | Ν         | SS | RS   | RR | P-value | Ν  | SS | RS            | RR  | P-value |  |
| Sahelo-               | Pikine                | An. arabiensis | 27        | 0  | 0    | 27 | NS      | 17 | 0  | 0             | 17  | NS      |  |
| Sudanese              | Diamnadio             | An. arabiensis | 18        | 0  | 2    | 16 | NS      | 28 | 0  | 0             | 28  | NS      |  |
|                       | Diofor                | An. arabiensis | 28        | 10 | 2    | 16 | NS      | 28 | 9  | 5             | 14  | NS      |  |
| Sudano-               | Ndoffane              | An. arabiensis | 20        | 10 | 2    | 8  | NS      | 29 | 10 | 1             | 18  | NS      |  |
| Sudano-<br>Sahelian   | Nioro                 | An. arabiensis | 26        | 19 | 0    | 7  | NS      | 28 | 16 | 1             | 11  | NS      |  |
| Sallellall            | INIOTO                | An. gambiae    | 1         | 0  | 0    | 1  | 113     | 1  | 1  | 0             | 0   | 1N3     |  |
|                       | Koungheul             | An. arabiensis | 27        | 25 | 1    | 1  | NS      | 27 | 20 | 0             | 7   | NS      |  |
| Sudanese              | Makacolibantang       | An. arabiensis | 29        | 13 | 14   | 2  | NS      | 30 | 23 | 6             | 1   | NS      |  |
|                       | Saraya                | An. arabiensis | 3         | 2  | 0    | 1  | 0.326   | 5  | 4  | 1             | 0   | 0.0012  |  |
|                       | Saraya                | An. gambiae    | 15        | 3  | 1    | 11 | 0.320   | 7  | 0  | 0             | 7   | 0.0012  |  |
|                       | Salemata              | An. arabiensis | 1         | 1  | 0    | 0  | 0.034   | 1  | 1  | 0             | - 0 | 0.071   |  |
|                       | Salemata              | An. gambiae    | 28        | 0  | 0    | 28 | 0.034   | 27 | 0  | 1             | 26  | 0.071   |  |
| Sudano-               | Vadaugau              | An. arabiensis | 14        | 5  | 4    | 5  | 0.276   | 23 | 5  | 2             | 16  | 1       |  |
| Guinean               | Kedougou              | An. coluzzii   | 3         | 0  | 0    | 3  | 0.270   | 2  | 0  | 0             | 2   | 1       |  |
| Guinean               | Volingara             | An. arabiensis | 15        | 4  | 1    | 10 | 0.624   | 9  | 5  | 1             | 3   | 1       |  |
|                       | Velingara             | An. gambiae    | 4         | 0  | 0    | 4  | 0.024   | 0  | 0  | 0             | 0   | 1       |  |
|                       |                       | An. arabiensis | 6         | 1  | 0    | 5  |         | 10 | 1  | 0             | 9   |         |  |
|                       | Kolda                 | An. coluzzii   | 0         | 0  | 0    | 0  | NA      | 2  | 0  | 0             | 2   | 1       |  |
|                       |                       | An. gambiae    | 13        | 1  | 0    | 12 |         | 4  | 0  | 0             | 4   |         |  |

### TABLE 18: GENOTYPIC PREVALENCE OF THE *KDR*-WEST AND *KDR*-EAST MUTATIONS BY SPECIES AND GEOGRAPHIC AREA

Note: N = Number tested; RR, RS, and SS represent the different genotypes with R corresponding to the resistant mutant allele (either for the Vgsc-1014F or Vgsc-1014S) and S to the susceptible wild allele Vgsc-1014L, NA = Not Applicable, NS = Not Significant

#### 3.3.7 ACE 1<sup>R</sup> MUTATION

The investigation of the Ace1<sup>R</sup> mutation (G119S) revealed the exclusive presence of the wild-type (susceptible) allele in almost all the sentinel districts, excepted in the southern part of the country, where two homozygous RR specimens (Salemata) and five heterozygotes RS (Salemata: 4; Saraya: 1) were found (Figure 29 and Table 19). The  $Ace1^{R}$  mutation was found only in *An. gambiae* s.l. where it was present in both surviving and dead specimen post exposure to insecticides (Tables 20 and 21).

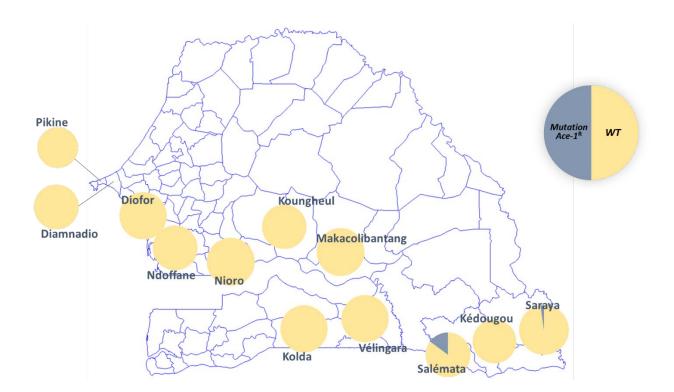



FIGURE 29: SPATIAL DISTRIBUTION AND PREVALENCE OF THE ACE 1<sup>R</sup> MUTATION IN AN. GAMBIAE S.L.

TABLE 19: GENOTYPIC PREVALENCE OF THE ACE-1 MUTATION IN AN. GAMBIAE S.L. POPULATIONS ACCORDING TO THE DISTRICT AND GEOGRAPHICAL AREA

| Conservation      | Sentinel Districts | N  | Ge | enotypes | ;  | Allelic frequ | uencies (%) |
|-------------------|--------------------|----|----|----------|----|---------------|-------------|
| Geographical zone | Sentinel Districts |    | SS | RS       | RR | S             | R           |
| Sahelo-Sudanese   | Pikine             | 30 | 30 | 0        | 0  | 100           | 0           |
| Saneio-Sudianese  | Diamnadio          | 27 | 27 | 0        | 0  | 100           | 0           |
|                   | Diofior            | 30 | 30 | 0        | 0  | 100           | 0           |
| Sudano-Sahelian   | Ndoffane           | 28 | 28 | 0        | 0  | 100           | 0           |
| Sudano-Sanenan    | Nioro              | 28 | 28 | 0        | 0  | 100           | 0           |
|                   | Koungheul          | 28 | 28 | 0        | 0  | 100           | 0           |
| Sudanese          | Makacolibantang    | 30 | 30 | 0        | 0  | 100           | 0           |
|                   | Saraya             | 22 | 21 | 1        | 0  | 97.73         | 2.27        |
|                   | Salemata           | 27 | 21 | 4        | 2  | 85.19         | 14.81       |
| Sudano-Guinean    | Kedougou           | 28 | 28 | 0        | 0  | 100           | 0           |
|                   | Velingara          | 27 | 27 | 0        | 0  | 100           | 0           |
|                   | Kolda              | 25 | 25 | 0        | 0  | 100           | 0           |

Note: N= Number tested; RR, RS and SS represent the different genotypes with R corresponding to the resistant mutant allele (G119S) and S to the susceptible wild allele

#### TABLE 20: GENOTYPIC PREVALENCE OF THE ACE 1<sup>R</sup> MUTATION ACCORDING TO THE PHENOTYPIC STATUS OF *AN. GAMBIAE* S.L. FEMALES AFTER THEIR EXPOSURE TO INSECTICIDES

| Sentinel Districts | Status | N  | Ace 1 genotypes |    |    |  |  |  |
|--------------------|--------|----|-----------------|----|----|--|--|--|
| Sentinei Districts | Status | 1  | SS              | RS | RR |  |  |  |
| Pikine             | Dead   | 22 | 22              | 0  | 0  |  |  |  |
| Pikille            | Alive  | 8  | 8               | 0  | 0  |  |  |  |
| Diamnadio          | Dead   | 14 | 14              | 0  | 0  |  |  |  |
| Diamiadio          | Alive  | 13 | 13              | 0  | 0  |  |  |  |

| Diofor          | Dead  | 30 | 30 | 0 | 0 |
|-----------------|-------|----|----|---|---|
| Diotor          | Alive | 0  | 0  | 0 | 0 |
| Ndoffane        | Dead  | 27 | 27 | 0 | 0 |
| Nuomane         | Alive | 1  | 1  | 0 | 0 |
| Nioro           | Dead  | 26 | 26 | 0 | 0 |
| NIOIO           | Alive | 2  | 2  | 0 | 0 |
| Koungheul       | Dead  | 15 | 15 | 0 | 0 |
| Koungneur       | Alive | 13 | 13 | 0 | 0 |
| Makaaalihantana | Dead  | 30 | 30 | 0 | 0 |
| Makacolibantang | Alive | 0  | 0  | 0 | 0 |
| Saraya          | Dead  | 11 | 11 | 0 | 0 |
| Saraya          | Alive | 11 | 10 | 1 | 0 |
| Salemata        | Dead  | 8  | 6  | 0 | 2 |
| Salemata        | Alive | 19 | 15 | 4 | 0 |
| Vadauaau        | Dead  | 14 | 14 | 0 | 0 |
| Kedougou        | Alive | 14 | 14 | 0 | 0 |
| Valingan        | Dead  | 13 | 13 | 0 | 0 |
| Velingara       | Alive | 14 | 14 | 0 | 0 |
| Kolda           | Dead  | 23 | 23 | 0 | 0 |
| Noiua           | Alive | 2  | 2  | 0 | 0 |

### TABLE 21: GENOTYPIC PREVALENCE OF THE ACE 1<sup>R</sup> MUTATION BY SPECIES, DISTRICT, AND GEOGRAPHICAL AREA

| Casarahiantaan    | Sentinel Districts | Seco.          | NT | Ace-1 genotypes |    |    |  |  |
|-------------------|--------------------|----------------|----|-----------------|----|----|--|--|
| Geographical zone | Sentinel Districts | Species        | Ν  | SS              | RS | RR |  |  |
| Sahelo-Sudanese   | Pikine             | An. arabiensis | 29 | 29              | 0  | 0  |  |  |
| Saneio-Sudanese   | Diamnadio          | An. arabiensis | 27 | 27              | 0  | 0  |  |  |
|                   | Diofor             | An. arabiensis | 30 | 30              | 0  | 0  |  |  |
|                   | Ndoffane           | An. arabiensis | 27 | 27              | 0  | 0  |  |  |
| Sudano-Sahelian   | Indomatie          | An. gambiae    | 1  | 1               | 0  | 0  |  |  |
| Sudano-Sanenan    | Nioro              | An. arabiensis | 25 | 25              | 0  | 0  |  |  |
|                   | 11010              | An. gambiae    | 2  | 2               | 0  | 0  |  |  |
|                   | Koungheul          | An. arabiensis | 27 | 27              | 0  | 0  |  |  |
| Sudanese          | Makacolibantang    | An. arabiensis | 30 | 30              | 0  | 0  |  |  |
|                   | Samaya             | An. arabiensis | 5  | 5               | 0  | 0  |  |  |
|                   | Saraya             | An. gambiae    | 16 | 15              | 1  | 0  |  |  |
|                   | Salemata           | An. arabiensis | 1  | 1               | 0  | 0  |  |  |
|                   | Salemata           | An. gambiae    | 25 | 19              | 4  | 2  |  |  |
| Sudano-Guinean    | Kadaugau           | An. arabiensis | 26 | 26              | 0  | 0  |  |  |
| Sudano-Gumean     | Kedougou           | An. gambiae    | 2  | 2               | 0  | 0  |  |  |
|                   |                    | An. arabiensis | 25 | 25              | 0  | 0  |  |  |
|                   | Velingara          | An. coluzzii   | 1  | 1               | 0  | 0  |  |  |
|                   |                    | An. gambiae    | 1  | 1               | 0  | 0  |  |  |
|                   | Kolda              | An. arabiensis | 18 | 18              | 0  | 0  |  |  |

### 4. CONCLUSION

In all the sentinel districts surveyed, *An. arabiensis (An. gambiae* s.l.) remains the predominant species of the anopheline fauna. The highest densities of *An. funestus* s.l. were recorded in Nioro and Ndoffane. Moreover in 2019, the presence of *An. pharoensis*, and *An. funestus* s.l. was recorded in the Sahelian region of the country, but were not observed in that zone during the 2018 entomological monitoring activities.

The biting rates of *An. gambiae* s.l. were high during the rainy season (September-October), with the highest host-seeking female densities recorded in the Sudanese and Sudano-Guinean zones. Both *An. gambiae* s.l. and *An. funestus* s.l. were more active between 02 a.m. and 05 a.m. of the night. Although there was no significant inter-zone variations, a significantly larger proportion of females were caught indoors through HLCs (endophagic) in each zone. Conversely, female *An. funestus* s.l., for which the highest biting rates were recorded in the Sudano-Sahelian zone, displayed an overall outdoor biting (exophagic) tendency, except in the district of Nioro. The vector behavior and periodical density will support the type and timing of vector control measures to be put in place in the country, such as IRS.

High IDRs were also recorded for *An. gambiae* s.l. during the rainy season. However, female *An. gambiae* s.l. remain endophagic and endophilic in the Sahelian zone, but endophagic and exophilic in the Sudano-Guinean zone. Additionally, the biting and resting behaviors of *An. gambiae* s.l. have not changed in the Sudano-Guinean zone per earlier data. In contrast, *An. gambiae* s.l. of the Sahelian zone have likely changed their behavior from exophilic tendency to endophagic. In Nioro and Ndoffane, where larger numbers of *An. funestus* s.l. displayed a clear endophilic tendency.

High biting and anthropophilic rates of *An. gambiae* s.l. were observed in the Sudano-Guinean zone, where malaria transmission remains the highest of the geographical zones. In Richard Toll district, in the Sahelian zone, both *An. funestus* and *An. gambiae* s.l. carried malaria parasites and were therefore involved in malaria transmission. The low entomological inoculation rate of *An. gambiae* s.l. in the Sahelian zone could be explained both by their low biting rates and their zoophagic tendency. Compared to the Sudano-Guinean area, the involvement of *An. funestus* s.l. in malaria transmission in the Sahelian zone could be linked to their high biting and mean parity rates, as well as to their anthropophilic tendency.

Resistance to all pyrethroids tested was observed in the *An. gambiae* s.l. populations in all geographical zones, though an increase in mortality was noted when the mosquitoes were pre-exposed with association to PBO. The vectors remained susceptible to pirimiphos-methyl and clothianidin across all the surveyed geographical areas of the country. This trend is important as Senegal is resuming the implementation of IRS for malaria vector control in 2020.

Furthermore, susceptibility to chlorfenapyr was observed in a majority of sites and geographical zones except in Diamniadio. Therefore, in addition to the PBO-incorporated ITNs, chlorfenapyr-based ITNs could be targeted for distribution in specific areas of higher malaria transmission.

### 5. REFERENCES

- Diagne, N., Fontenille, D., Konaté, L., Faye, O., Lamizana, M. T., Legros, F., Molez, J.-F., & Trape, J.-F. (1994). Les anophèles du Sénégal : liste commentée et illustrée. *Bull. Soc. Path.*, 87, 267 –277.
- Beier, J. C., Perkins, P. V, Wirtz, R. a, Koros, J., Diggs, D., Gargan, T. P., & Koech, D. K. (1988). Bloodmeal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on *Anopheles* (Diptera: Culicidae) in Kenya. *Journal of Medical Entomology*, 25(1985), 9–16. https://doi.org/10.1093/jmedent/25.1.9
- Wilkins, E. E., Howell, P. I., & Benedict, M. Q. (2006). IMP PCR primers detect single nucleotide polymorphisms for *Anopheles gambiae* species identification, Mopti and Savanna rDNA types, and resistance to dieldrin in Anopheles arabiensis. *Malaria Journal*, 5, 1–7. <u>https://doi.org/10.1186/1475-2875-5-125</u>
- Huynh L.Y., Sandve S.R., Hannan L.M., Van Ert M., Gimnig J.E. (2007). Fitness costs of pyrethroid insecticide resistance in *Anopheles gambiae*. In: Annual meeting of the society for the study of evolution, Christchurch, New Zealand.

### 6. ANNEXES

### ANNEX A: ANOPHELES SPECIES COMPOSITION AND PROPORTION BY GEOGRAPHICAL AREA

|                |            | Ec                 | o geographical z   | ones        |                   |
|----------------|------------|--------------------|--------------------|-------------|-------------------|
| Species        | Sahelian   | Sahelo<br>Sudanese | Sudano<br>Sahelian | Sudanese    | Sudano<br>Guinean |
| An. gambiae    | 324        | 2 054 (90.41%)     | 6 180 (63.42%)     | 4 274       | 8 394 (98.96%)    |
| s.l.           | (57.86%)   |                    |                    | (99.65%)    |                   |
| An. funestus   | 142        | 7 (0.31%)          | 3 393 (34.82%)     | 0 (0%)      | 35 (0.41%)        |
| s.l.           | (25.36%)   |                    |                    |             |                   |
| An. pharoensis | 43 (7.68%) | 44 (1.95%)         | 29 (0.30%)         | 2 (0.05%)   | 12 (0.14%)        |
| An. squamosus  | 0 (0%)     | 0 (0%)             | 0 (0%)             | 2 (0.05%)   | 0 (0%)            |
| An. rufipes    | 24 (4.29%) | 166 (7.34%)        | 132 (1.35%)        | 3 (0.07%)   | 1 (0.01%)         |
| An. coustani   | 9 (1.61%)  | 0 (0%)             | 5 (0.05%)          | 7 (0.16%)   | 5 (0.06%)         |
| An. welcomei   | 0 (0%)     | 0 (0%)             | 5 (0.05%)          | 0 (0%)      | 1 (0.01%)         |
| An. nili       | 0 (0%)     | 0 (0%)             | 0 (0%)             | 1 (0.02%)   | 34 (0.40%)        |
| An. flavicosta | 18 (3.21%) | 0 (0%)             | 0 (0%)             | 0 (0%)      | 0 (0%)            |
| Total          | 560 (100%) | 2 262 (100%)       | 9 744 (100%)       | 4 289(100%) | 8 482(100%)       |

### ANNEX B: HUMAN BITING RATE (HBR), ENDOPHAGIC RATES (ER), INDOOR RESTING DENSITIES (IRD) AND PARITY RATE (PR) OF AN. GAMBIAE S.L. FEMALES BY SITES AND GEOGRAPHIC AREA

|                     | Districts       | HLC  | Man/Night | HBR   | Indoor<br>catches | Outdoor<br>catches | Endophagic<br>rates | Total<br>dissected | Parous | Parity<br>rate (%) | PSC  | Number of<br>rooms | Resting<br>densities |
|---------------------|-----------------|------|-----------|-------|-------------------|--------------------|---------------------|--------------------|--------|--------------------|------|--------------------|----------------------|
| 0.1.1               | Richard Toll    | 30   | 72        | 0.42  | 18                | 12                 | 0.60                | 30                 | 24     | 80.00              | 18   | 60                 | 0.30                 |
| Sahelian            | Podor           | 77   | 72        | 1.07  | 36                | 41                 | 0.47                | 78                 | 60     | 76.92              | 199  | 60                 | 3.32                 |
| ,                   | Total           | 107  | 72        | 0.00  | 54                | 53                 | 0.50                | 108                | 84     | 77.78              | 217  | 60                 | 3.62                 |
|                     | Matam           | 51   | 72        | 0.71  | 28                | 23                 | 0.55                | 51                 | 39     | 76.47              | 1268 | 60                 | 21.13                |
|                     | Kanel           | 5    | 72        | 0.07  | 4                 | 1                  | 0.80                | 5                  | 1      | 20.00              | 35   | 60                 | 0.58                 |
|                     | Bakel           | 32   | 72        | 0.44  | 20                | 12                 | 0.63                | 32                 | 21     | 65.63              | 57   | 60                 | 0.95                 |
| Sahelo-             | Ranerou         | 32   | 72        | 0.44  | 21                | 11                 | 0.66                | 32                 | 28     | 87.50              | 75   | 60                 | 1.25                 |
| Sudanese            | Linguere        | 38   | 72        | 0.53  | 22                | 16                 | 0.58                | 33                 | 22     | 66.67              | 170  | 60                 | 2.83                 |
|                     | Pikine*         | -    | -         | -     | -                 | -                  | -                   | -                  | -      | -                  | 39   | 30                 | 1.30                 |
|                     | Tivaoune        | 17   | 96        | 0.18  | 9                 | 8                  | 0.53                | 5                  | 3      | 60                 | 212  | 80                 | 2.65                 |
|                     | Thies#          | -    | -         | -     | -                 | -                  | -                   | -                  | -      | -                  | 1    | 40                 | 0.03                 |
| ,                   | Total           | 175  | 456       | 0.38  | 104               | 71                 | 0.59                | 158                | 114    | 72.15              | 1857 | 450                | 4.13                 |
|                     | Diofior         | 715  | 48        | 14.90 | 424               | 291                | 0.59                | 174                | 42     | 24.14              | 367  | 40                 | 9.18                 |
| Sudano-             | Niakhar         | 156  | 48        | 3.25  | 93                | 63                 | 0.60                | 73                 | 40     | 54.79              | 2078 | 40                 | 51.95                |
| Sudano-<br>Sahelian | Koungheul       | 26   | 144       | 0.18  | 16                | 10                 | 0.62                | 8                  | 5      | 62.50              | 75   | 120                | 0.63                 |
| Sanenan             | Nioro           | 70   | 144       | 0.49  | 27                | 43                 | 0.39                | 54                 | 21     | 38.89              | 989  | 120                | 8.24                 |
|                     | Ndoffane        | 281  | 144       | 1.95  | 99                | 182                | 0.35                | 218                | 36     | 16.51              | 1423 | 120                | 11.86                |
| ,                   | Total           | 1248 | 528       | 2.36  | 659               | 589                | 0.53                | 527                | 144    | 27.32              | 4932 | 440                | 11.21                |
|                     | Makacolibantang | 141  | 72        | 1.96  | 69                | 72                 | 0.49                | 90                 | 58     | 64.44              | 122  | 80                 | 1.53                 |
| Sudanese            | Tambacounda     | 2256 | 120       | 18.80 | 1293              | 963                | 0.57                | 236                | 160    | 67.80              | 88   | 100                | 0.88                 |
|                     | Dianke Makha    | 1540 | 72        | 21.39 | 742               | 798                | 0.48                | 208                | 160    | 76.92              | 127  | 60                 | 2.12                 |
| ,                   | Total           | 3937 | 264       | 14.91 | 2104              | 1833               | 0.53                | 534                | 378    | 70.79              | 337  | 240                | 1.40                 |
|                     | Kedougou        | 3089 | 144       | 21.45 | 1897              | 1192               | 0.61                | 879                | 486    | 55.29              | 48   | 120                | 0.40                 |
|                     | Saraya          | 891  | 48        | 18.56 | 349               | 542                | 0.39                | 411                | 346    | 84.18              | 11   | 40                 | 0.28                 |
| Sudano-             | Salemata        | 450  | 48        | 9.38  | 226               | 224                | 0.50                | 375                | 278    | 74.13              | 24   | 40                 | 0.60                 |
| Guinean             | Velingara       | 990  | 120       | 8.25  | 450               | 540                | 0.45                | 592                | 398    | 67.23              | 124  | 100                | 1.24                 |
|                     | Kolda           | 113  | 72        | 1.57  | 71                | 42                 | 0.63                | 103                | 92     | 89.32              | 41   | 60                 | 0.68                 |
|                     | Oussouye        | 1024 | 72        | 14.22 | 431               | 593                | 0.42                | 427                | 105    | 24.59              | 22   | 60                 | 0.37                 |
| ,                   | Total           | 6557 | 504       | 13.01 | 3424              | 3133               | 0.52                | 2787               | 1705   | 61.18              | 270  | 420                | 0.64                 |

Note: HLC: human landing catch; PSC: pyrethrum spray collection

\*: collections done by CDC light trap

# ANNEX C: HUMAN BITING RATES (HBR), ENDOPHAGIC RATES (ER), INDOOR RESTING DENSITIES (IRD) ET PARITY RATE (PR) OF AN. FUNESTUS S.L. FEMALES BY SITES AND GEOGRAPHIC AREA

| Zone                | District        | Total<br>caught<br>by HLC | Man/Night | Biting<br>densities | Indoor<br>catches | Outdoor<br>catches | Endophagic<br>rates | Total<br>dissected | Parous | Parity<br>rate (%) | Total<br>collected<br>by PSC | Number<br>of<br>rooms | Resting<br>densities |
|---------------------|-----------------|---------------------------|-----------|---------------------|-------------------|--------------------|---------------------|--------------------|--------|--------------------|------------------------------|-----------------------|----------------------|
| Sahelian            | Richard<br>Toll | 54                        | 48        | 1.13                | 20                | 34                 | 0.37                | 54                 | 45     | 83.33              | 73                           | 60                    | 1.22                 |
|                     | Podor           | 3                         | 48        | 0.06                | 1                 | 2                  | 0.33                | 3                  | 3      | 100.00             | 4                            | 60                    | 0.07                 |
| Total               |                 | 57                        | 96        | 0.6                 | 21                | 36                 | 0.37                | 57                 | 48     | 84.21              | 77                           | 120                   | 0.64                 |
| Sahelo-<br>Sudanese | Ranerou         | 0                         | 48        | 0.00                | 0                 | 0                  | 0.00                | 0                  | 0      | 0.00               | 7                            | 60                    | 0.12                 |
| Total               |                 | 0                         | 48        | 0.00                | 0                 | 0                  | 0.00                | 0                  | 0      | 0.00               | 7                            | 60                    | 0.12                 |
| Sudano-             | Nioro           | 265                       | 144       | 1.84                | 145               | 120                | 0.55                | 211                | 85     | 40.28              | 1574                         | 120                   | 13.12                |
| Sahelian            | Ndoffane        | 774                       | 144       | 5.38                | 284               | 490                | 0.37                | 632                | 233    | 36.87              | 780                          | 120                   | 6.50                 |
| Total               |                 | 1039                      | 288       | 7.22                | 429               | 610                | 0.92                | 843                | 318    | 77.15              | 2354                         | 240                   | 9.81                 |
|                     | Kedougou        | 0                         | 144       | 0                   | 0                 | 0                  | 0                   | 0                  | 0      | 0                  | 1                            | 120                   | 0.01                 |
| Sudano-             | Saraya          | 5                         | 48        | 0.10                | 1                 | 4                  | 0.20                | 3                  | 3      | 100                | 1                            | 40                    | 0.03                 |
| Guinean             | Velingara       | 0                         | 120       | 0.00                | 0                 | 0                  | 0.00                | 0                  | 0      | 0.00               | 5                            | 100                   | 0.05                 |
|                     | Kolda           | 0                         | 72        | 0.00                | 0                 | 0                  | 0.00                | 0                  | 0      | 0.00               | 23                           | 60                    | 0.38                 |
| Total               |                 | 5                         | 384       | 0.01                | 1                 | 4                  | 0.2                 | 3                  | 3      | 100                | 30                           | 320                   | 0.09                 |

# ANNEX D: ABDOMINAL STATUS OF INDOOR RESTING AN. GAMBIAE S.L. FEMALES BY SITES AND GEOGRAPHICAL AREA

| Geographical zone | District        | Total | Unfed        | Blood-fed     | Half-gravid  | Gravid        |
|-------------------|-----------------|-------|--------------|---------------|--------------|---------------|
| Sahelian          | Richard Toll    | 18    | 0%           | 15 (83.33%)   | 1 (5.56%)    | 2 (11.11%)    |
| Sallellall        | Podor           | 199   | 4 (2.01%)    | 145 (72.86%)  | 1 (0.50%)    | 49 (24.62%)   |
| +<br>-            | Fotal           | 217   | 4 (1.84%)    | 160 (73.73%)  | 2 (0.92%)    | 51 (23.50%)   |
|                   | Matam           | 1268  | 2 (0.16%)    | 947 (74.68%)  | 0%           | 319 (25.16%)  |
|                   | Kanel           | 35    | 0%           | 25 (71.43%)   | 1 (2.86%)    | 9 (25.71%)    |
|                   | Bakel           | 57    | 0%           | 46 (80.70%)   | 1 (1.75%)    | 10 (17.50%)   |
| Sahelo-Sudanese   | Ranerou         | 75    | 0%           | 61 (81.33%)   | 1 (1.33%)    | 13 (17.33%)   |
| Saneto-Sudanese   | Linguere        | 170   | 1 (0.59%)    | 133 (78.24%)  | 3 (1.76%)    | 33 (19.41%)   |
|                   | Pikine          | 39    | 4 (10.26%)   | 10 (25.64%)   | 12 (30.77%)  | 13 (33.33%)   |
|                   | Tivaoune        | 212   | 22 (10.38%)  | 68 (32.08%)   | 60 (28.30%)  | 62 (29.25%)   |
|                   | Thies           | 1     | 0%           | 0%            | 1 (100%)     | 0%            |
| ۴.                | Гotal           | 1857  | 29 (1.56%)   | 1290 (69.47%) | 79 (4.25%)   | 459 (24.72%)  |
|                   | Diofior         | 367   | 12 (3.27%)   | 184 (50.00%)  | 17 (5.00%)   | 154 (42.00%)  |
|                   | Niakhar         | 2078  | 209 (10.06%) | 1239 (59.64%) | 0%           | 630 (30.32%)  |
| Sudaneo-Sahelian  | Koungheul       | 75    | 0%           | 25 (33.33%)   | 21 (28.00%)  | 29 (38.67%)   |
|                   | Nioro           | 989   | 112 (11.32%) | 469 (47.42%)  | 137 (13.85%) | 271 (27.40%)  |
|                   | Ndoffane        | 1423  | 45 (3.16%)   | 865 (60.79%)  | 315 (22.14%) | 198 (13.91%)  |
| ۲.                | Fotal           | 4932  | 378 (7.66%)  | 2782 (56.41%) | 490 (9.94%)  | 1282 (25.99%) |
|                   | Makacolibantang | 122   | 0%           | 39 (31.97%)   | 53 (43.44%)  | 30 (24.59%)   |
| Sudanese          | Tambacounda     | 88    | 11 (12.50%)  | 41 (46.59%)   | 14 (15.91%)  | 22 (25.00%)   |
|                   | Dianke Makha    | 127   | 15 (11.81%)  | 46 (36.22%)   | 24 (18.90%)  | 42 (33.07%)   |
| *                 | Гotal           | 337   | 26 (7.72%)   | 126 (37.39%)  | 91 (27.00%)  | 94 (27.89%)   |
|                   | Kedougou        | 48    | 7 (14.58%)   | 35 (72.92%)   | 2 (4.17%)    | 4 (8.33%)     |
|                   | Saraya          | 11    | 0%           | 9 (81.82%)    | 0%           | 2 (18.18%)    |
|                   | Salemata        | 24    | 1 (4.17%)    | 18 (75.00%)   | 0%           | 5 (20.83%)    |
| Sudano-Guinean    | Velingara       | 124   | 8 (6.41%)    | 73 (58.87%)   | 3 (2.42%)    | 40 (32.26%)   |
|                   | Kolda           | 41    | 1 (2.44%)    | 23 (56.10%)   | 1 (2.44%)    | 16 (39.02%)   |
|                   | Oussouye        | 22    | 1 (4.55%)    | 19 (86.36%)   | 1 (4.55%)    | 1 (4.55%)     |
|                   | Fotal           | 270   | 18 (6.67%)   | 177 (65.56%)  | 7 (2.59%)    | 68 (25.19%)   |

# ANNEX E: HUMAN BITING RATES (HBR), ENDOPHAGIC RATES (ER), INDOOR RESTING DENSITIES (IRD) AND PARITY RATE (PR) OF *AN. FUNESTUS* S.L. FEMALES IN THE SENTINEL DISTRICTS BY SITE, GEOGRAPHIC AREA AND SEASON

|                      |                 |     | ught by<br>LC | HI   | BRs  | Endopha | agic rates | Parity | rate  |     | ollected by<br>PSC | Resting | densities |
|----------------------|-----------------|-----|---------------|------|------|---------|------------|--------|-------|-----|--------------------|---------|-----------|
| Geographical<br>zone | District        | RS  | DS            | RS   | DS   | RS      | DS         | RS     | DS    | RS  | DS                 | RS      | DS        |
| Sahelian             | Richard<br>Toll | 28  | 26            | 1.17 | 1.08 | 0.36    | 0.38       | 85.71  | 80.77 | 13  | 60                 | 0.33    | 3.00      |
|                      | Podor           | 3   | 0             | 0.13 | 0.00 | 0.33    | 0.00       | 100.00 | 0.00  | 4   | 0                  | 0.10    | 0.00      |
| Total                |                 | 31  | 26            | 0.65 | 0.54 | 0.35    | 0.38       | 87.10  | 80.77 | 17  | 60                 | 0.21    | 1.50      |
| Sahelo-Sudanese      | Ranerou         | 0   | 0             | 0.00 | 0.00 | 0.00    | 0.00       | 0.00   | 0.00  | 7   | 0                  | 0.18    | 0.00      |
| Total                |                 | 0   | 0             | 0.00 | 0.00 | 0.00    | 0.00       | 0.00   | 0.00  | 7   | 0                  | 0.18    | 0.00      |
| Sandama Calcultar    | Nioro           | 112 | 153           | 2.33 | 1.59 | 0.51    | 0.58       | 48.89  | 33.88 | 521 | 1053               | 13.03   | 13.16     |
| Sudano-Sahelian      | Ndoffane        | 345 | 429           | 7.19 | 4.47 | 0.34    | 0.39       | 40.87  | 34.21 | 308 | 472                | 7.70    | 5.90      |
| Total                |                 | 457 | 582           | 4.76 | 3.03 | 0.38    | 0.44       | 42.98  | 34.13 | 829 | 1525               | 10.36   | 9.53      |
|                      | Kedougou        | 0   | 0             | 0.00 | 0.00 | 0.00    | 0.00       | 0.00   | 0.00  | 1   | 0                  | 0.03    | 0.00      |
| Sectors Contractor   | Saraya          | 5   | 0             | 0.21 | 0.00 | 0.20    | 0.00       | 100    | 0.00  | 1   | 0                  | 0.05    | 0.00      |
| Sudano-Guinean       | Velingara       | 0   | 0             | 0.00 | 0.00 | 0.00    | 0.00       | 0.00   | 0.00  | 2   | 3                  | 0.03    | 0.08      |
|                      | Kolda           | 0   | 0             | 0.00 | 0.00 | 0.00    | 0.00       | 0.00   | 0.00  | 14  | 9                  | 0.35    | 0.45      |
| Total                |                 | 5   | 0             | 0.04 | 0.00 | 0.20    | 0.00       | 100    | 0.00  | 18  | 12                 | 0.11    | 0.08      |

Note: RS = rainy season; DS = dry season

### ANNEX F: ABDOMINAL STATUS OF INDOOR RESTING AN. FUNESTUS S.L. FEMALES BY GEOGRAPHICAL AREA, SITES, AND SEASON

|                     |              |     | Total | Uı         | nfed        | Blood        | l-fed        | Half-        | gravid       | Gra          | wid          |
|---------------------|--------------|-----|-------|------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Zone                | District     | RS  | DS    | RS         | DS          | RS           | DS           | RS           | DS           | RS           | DS           |
|                     | Richard Toll | 13  | 60    | 0%         | 1 (1.67%)   | 10 (76.92%)  | 44 (73.33%)  | 2 (15.38%)   | 3 (5.00%)    | 1 (7.69%)    | 12 (20.00%)  |
| Sahelian            | Podor        | 4   | 0     | 0%         | 0%          | 2 (50.00%)   | 0%           | 1 (25.00%)   | 0%           | 1 (25.00%)   | 0%           |
|                     | Total        | 17  | 60    | 0%         | 1 (1.67%)   | 12 (70.59%)  | 44 (73.33%)  | 3 (17.65%)   | 3 (5.00%)    | 2 (11.76%)   | 12 (20.00%)  |
| Sahelo-             | Ranerou      | 7   | 0     | 1 (14.29%) | 0%          | 2 (28.57%)   | 0%           | 1 (14.29%)   | 0%           | 3 (42.86%)   | 0%           |
| Sudanese            | Total        | 7   | 0     | 1 (14.29%) | 0%          | 2 (28.57%)   | 0%           | 1 (14.29%)   | 0%           | 3 (42.86%)   | 0%           |
| 0.1                 | Nioro        | 521 | 1053  | 48 (9.21%) | 88 (8.36%)  | 308 (59.12%) | 583 (55.37%) | 64 (12.28%)  | 152 (14.43%) | 101 (19.39%) | 230 (21.84%) |
| Sudano-<br>Sahelian | Ndoffane     | 308 | 472   | 11 (3.57%) | 51 (10.81%) | 177 (57.47   | 279 (59.11%) | 77 (25.00%)  | 53 (11.23%)  | 43 (13.96%)  | 89 (18.86%)  |
| Sallellall          | Total        | 829 | 1525  | 59 (7.12%) | 139 (9.11%) | 485 (58.50%) | 862 (56.52%) | 141 (17.01%) | 205 (13.44%) | 144 (17.37%) | 319 (20.92%) |
|                     | Kedougou     | 1   | 0     | 0%         | 0%          | 1 (100%)     | 0%           | 0%           | 0%           | 0%           | 0%           |
| 0 1                 | Saraya       | 1   | 0     | 0%         | 0%          | 0%           | 0%           | 0%           | 0%           | 1 (100%)     | 0%           |
| Sudano-<br>Guinean  | Velingara    | 2   | 3     | 0%         | 0%          | 2 (100%)     | 3 (100%)     | 0%           | 0%           | 0%           | 0%           |
| Guinean             | Kolda        | 14  | 9     | 1 (7.14%)  | 3 (33.33%)  | 12 (85.72%)  | 6 (66.67%)   | 1 (7.14%)    | 0%           | 0%           | 0%           |
|                     | Total        | 18  | 12    | 1 (5.56%)  | 3 (25.00%)  | 15 (83.33%)  | 9 (75.00%)   | 1 (5.56%)    | 0%           | 1 (5.56%)    | 0%           |

Note: RS = rainy season; DS = dry season

### ANNEX G: HUMAN BITING RATES (HBR), ENDOPHAGIC RATES (ER), INDOOR RESTING DENSITIES (IRD) AND PARITY RATE (PR) OF *AN. GAMBIAE* S.L. FEMALE BY THE SENTINEL DISTRICTS, SITE AND SEASON

|                 | caug | otal<br>tht by<br>LC | Nur<br>Man/ | nber<br>Night | H      | BR     | Ind<br>cate |    | Outo<br>catc |     | Endop<br>rat | 0     | To<br>disse | otal<br>ected | Par  | ous | Parity | v rate | To<br>collec<br>PS |     |     | ber of<br>oms | Res<br>dens | ting<br>sities |
|-----------------|------|----------------------|-------------|---------------|--------|--------|-------------|----|--------------|-----|--------------|-------|-------------|---------------|------|-----|--------|--------|--------------------|-----|-----|---------------|-------------|----------------|
| District        | RS   | DS                   | RS          | DS            | RS     | DS     | RS          | DS | RS           | DS  | RS           | DS    | RS          | DS            | RS   | DS  | RS     | DS     | RS                 | DS  | RS  | DS            | RS          | DS             |
| Richard Toll    | 24   | 6                    | 24          | 24            | 1.00   | 0.25   | 15          | 3  | 9            | 3   | 0.63         | 0.5   | 24          | 6             | 20   | 4   | 83.333 | 66.667 | 12                 | 0   | 40  | 20            | 0.3         | 0              |
| Podor           | 46   | 31                   | 24          | 24            | 1.92   | 1.29   | 22          | 14 | 24           | 17  | 0.48         | 0.452 | 46          | 32            | 34   | 26  | 73.913 | 81.25  | 36                 | 155 | 40  | 20            | 0.9         | 7.75           |
| Total           | 70   | 37                   | 48          | 48            | 1.46   | 0.77   | 37          | 17 | 33           | 20  | 0.53         | 0.459 | 70          | 38            | 54   | 30  | 77.143 | 78.947 | 48                 | 155 | 80  | 40            | 0.6         | 3.88           |
| Linguere        | 11   | 27                   | 24          | 24            | 0.46   | 1.13   | 6           | 16 | 5            | 11  | 0.55         | 0.593 | 11          | 22            | 7    | 15  | 63.636 | 68.182 | 20                 | 149 | 40  | 20            | 0.5         | 7.45           |
| Matam           | 21   | 30                   | 24          | 24            | 0.88   | 1.25   | 9           | 19 | 12           | 11  | 0.43         | 0.633 | 21          | 30            | 17   | 22  | 80.952 | 73.333 | 1162               | 104 | 40  | 20            | 29.05       | 5.2            |
| Kanel           | 5    | 0                    | 24          | 24            | 0.21   | 0.00   | 4           | 0  | 1            | 0   | 0.8          | 0.00  | 5           | 0             | 1    | 0   | 20.00  | 0.00   | 11                 | 22  | 40  | 20            | 0.275       | 1.1            |
| Bakel           | 14   | 18                   | 24          | 24            | 0.58   | 0.75   | 7           | 13 | 7            | 5   | 0.5          | 0.722 | 14          | 18            | 4    | 17  | 28.571 | 94.444 | 17                 | 39  | 40  | 20            | 0.425       | 1.95           |
| Ranerou         | 14   | 18                   | 24          | 24            | 0.58   | 0.75   | 8           | 13 | 6            | 5   | 0.57         | 0.722 | 14          | 18            | 10   | 18  | 71.429 | 100    | 19                 | 57  | 40  | 20            | 0.475       | 2.85           |
| Pikine*         | -    | -                    | -           | -             | -      | -      | -           | -  | -            | -   | -            | -     | -           | -             | -    | -   | -      | -      | 35                 | 4   | 20  | 10            | 1.75        | 0.40           |
| Tivaoune        | 17   | 0                    | 48          | 48            | 0.40   | 0.00   | 9           | 0  | 8            | 0   | 0.5          | 0.00  | 5           | 0             | 3    | 0   | 60.00  | 0.00   | 211                | 1   | 80  | 80            | 2.63        | 0.01           |
| Thies#          | -    | -                    | -           | -             | -      | -      | -           | -  | I            | -   | -            | -     | -           | -             | -    | I   | -      | -      | 1                  | 0   | 20  | 20            | 0.05        | 0.00           |
| Total           | 82   | 93                   | 168         | 168           | 0.4881 | 0.5536 | 43          | 61 | 39           | 32  | 0.52         | 0.656 | 70          | 88            | 42   | 72  | 60     | 81.818 | 1476               | 376 | 320 | 210           | 4.613       | 1.79           |
| Dioffior        | 715  | -                    | 48          | -             | 14.90  | nd     | 424         | -  | 291          | -   | 0.59         | -     | 174         | -             | 42   | 1   | 24.14  | -      | 367                | -   | 40  | -             | 9.18        | -              |
| Niakhar         | 156  | 0                    | 48          | 0             | 3.25   | 0.00   | 93          | 0  | 63           | 0   | 0.60         | 0.00  | 73          | 0             | 40   | 0   | 54.79  | 0.00   | 2078               | 0   | 40  | 0             | 52.00       | 0.00           |
| Koungheul       | 24   | 2                    | 48          | 96            | 0.50   | 0.02   | 15          | 1  | 9            | 1   | 0.63         | 0.50  | 6           | 2             | 3    | 2   | 50.00  | 100    | 61                 | 14  | 40  | 80            | 1.53        | 0.18           |
| Nioro           | 50   | 20                   | 48          | 96            | 1.04   | 0.21   | 20          | 7  | 30           | 13  | 0.40         | 0.35  | 36          | 18            | 16   | 5   | 44.444 | 27.778 | 791                | 198 | 40  | 80            | 19.78       | 2.48           |
| Ndoffane        | 92   | 189                  | 48          | 96            | 1.92   | 1.97   | 26          | 73 | 66           | 116 | 0.28         | 0.39  | 65          | 153           | 12   | 24  | 18.462 | 15.686 | 718                | 705 | 40  | 80            | 17.95       | 8.81           |
| Total           | 1037 | 211                  | 240         | 288           | 4.3208 | 0.7326 | 578         | 81 | 459          | 130 | 0.56         | 0.384 | 354         | 173           | 113  | 31  | 31.921 | 17.919 | 4015               | 917 | 200 | 240           | 20.08       | 3.82           |
| Makacolibantang | 136  | 5                    | 48          | 24            | 2.8333 | 0.21   | 69          | 0  | 67           | 5   | 0.51         | 0.00  | 87          | 3             | 55   | 3   | 63.22  | 100    | 115                | 7   | 40  | 40            | 2.88        | 0.18           |
| Tambacounda     | 2256 | 0                    | 48          | 72            | 47.00  | 0.00   | 1293        | 0  | 963          | 0   | 0.57         | 0.00  | 236         | 0             | 160  | 0   | 67.80  | 0.00   | 88                 | 0   | 40  | 60            | 2.20        | 0.00           |
| Dianke Makha    | 1540 | 0                    | 48          | 24            | 32.083 | 0.00   | 742         | 0  | 798          | 0   | 0.48         | 0.00  | 208         | 0             | 160  | 0   | 76.92  | 0.00   | 127                | 0   | 40  | 20            | 3.18        | 0.00           |
| Total           | 3932 | 5                    | 144         | 120           | 27.306 | 0.0417 | 2104        | 0  | 1828         | 5   | 0.54         | 0     | 531         | 3             | 375  | 3   | 70.621 | 100    | 330                | 7   | 120 | 120           | 2.75        | 0.06           |
| Kedougou        | 3067 | 22                   | 48          | 96            | 63.90  | 0.23   | 1885        | 12 | 1182         | 10  | 0.61         | 0.55  | 858         | 21            | 465  | 21  | 54.20  | 100.00 | 39                 | 9   | 40  | 80            | 0.98        | 0.11           |
| Velingara       | 975  | 15                   | 72          | 48            | 13.542 | 0.31   | 442         | 8  | 533          | 7   | 0.45         | 0.53  | 577         | 15            | 383  | 15  | 66.38  | 100    | 109                | 15  | 60  | 40            | 1.82        | 0.38           |
| Salemata        | 438  | 12                   | 24          | 24            | 18.25  | 0.50   | 216         | 10 | 222          | 2   | 0.49         | 0.83  | 363         | 12            | 266  | 12  | 73.28  | 100.00 | 24                 | 0   | 20  | 20            | 1.20        | 0.00           |
| Saraya          | 884  | 7                    | 24          | 24            | 36.833 | 0.2917 | 343         | 6  | 541          | 1   | 0.39         | 0.86  | 407         | 4             | 342  | 4   | 84.03  | 100.00 | 11                 | 0   | 20  | 20            | 0.55        | 0.00           |
| Kolda           | 110  | 3                    | 48          | 24            | 2.29   | 0.13   | 70          | 1  | 40           | 2   | 0.64         | 0.33  | 100         | 3             | 89   | 3   | 89.00  | 100    | 23                 | 18  | 40  | 20            | 0.58        | 0.90           |
| Oussouye        | 1024 | 0                    | 48          | 24            | 21.33  | 0.00   | 431         | 0  | 593          | 0   | 0.42         | 0.00  | 427         | 0             | 105  | 0   | 24.59  | 0.00   | 22                 | 0   | 40  | 20            | 0.55        | 0.00           |
| Total           | 6498 | 59                   | 264         | 240           | 24.614 | 0.2458 | 3387        | 37 | 3111         | 22  | 0.52         | 0.627 | 2732        | 55            | 1650 | 55  | 60.395 | 100    | 228                | 42  | 220 | 200           | 1.036       | 0.21           |

Note: RS = rainy season; DS = dry season \*collections done by CDC light trap #: No catch planned in this district

#### ANNEX H: HUMAN BITING RATES (HBR), ENDOPHAGIC RATES (ER), INDOOR RESTING DENSITIES (IRD) ET PARITY RATE (PR) OF AN. FUNESTUS S.L. FEMALES BY GEOGRAPHIC AREA, DISTRICTS, SITES AND SEASON

|                      |              | cau | otal<br>Ight<br>HLC | Man/ | Night | H    | BR   | Ind<br>cate | oor<br>ches |     | door<br>ches |      | phagic<br>tes |     | otal<br>ected | Par | ous | Parity | v rate | coll | otal<br>ected<br>PSC |     | nber<br>of<br>oms | Res<br>dens | ting<br>ities |
|----------------------|--------------|-----|---------------------|------|-------|------|------|-------------|-------------|-----|--------------|------|---------------|-----|---------------|-----|-----|--------|--------|------|----------------------|-----|-------------------|-------------|---------------|
| Geographical<br>zone | District     | RS  | DS                  | RS   | DS    | RS   | DS   | RS          | DS          | RS  | DS           | RS   | DS            | RS  | DS            | RS  | DS  | RS     | DS     | RS   | DS                   | RS  | DS                | RS          | DS            |
| Sahelian             | Richard Toll | 28  | 26                  | 24   | 24    | 1.17 | 1.08 | 10          | 10          | 18  | 16           | 0.36 | 0.38          | 28  | 26            | 24  | 21  | 85.71  | 80.77  | 13   | 60                   | 40  | 20                | 0.33        | 3.00          |
| Sanenan              | Podor        | 3   | 0                   | 24   | 24    | 0.13 | 0.00 | 1           | 0           | 2   | 0            | 0.33 | 0.00          | 3   | 0             | 3   | 0   | 100.00 | 0.00   | 4    | 0                    | 40  | 20                | 0.10        | 0.00          |
| Tot                  | al           | 31  | 26                  | 48   | 48    | 0.65 | 0.54 | 11          | 10          | 20  | 16           | 0.35 | 0.38          | 31  | 26            | 27  | 21  | 87.10  | 80.77  | 17   | 60                   | 80  | 40                | 0.21        | 1.50          |
| Sahelo-<br>Sudanese  | Ranerou      | 0   | 0                   | 24   | 24    | 0.00 | 0.00 | 0           | 0           | 0   | 0            | 0.00 | 0.00          | 0   | 0             | 0   | 0   | 0.00   | 0.00   | 7    | 0                    | 40  | 20                | 0.18        | 0.00          |
| Tot                  | al           | 0   | 0                   | 24   | 24    | 0.00 | 0.00 | 0           | 0           | 0   | 0            | 0.00 | 0.00          | 0   | 0             | 0   | 0   | 0.00   | 0.00   | 7    | 0                    | 40  | 20                | 0.18        | 0.00          |
| Sudano-              | Nioro        | 112 | 153                 | 48   | 96    | 2.33 | 1.59 | 57          | 88          | 55  | 65           | 0.51 | 0.58          | 90  | 121           | 44  | 41  | 48.89  | 33.88  | 521  | 1053                 | 40  | 80                | 13.03       | 13.16         |
| Sahelian             | Ndoffane     | 345 | 429                 | 48   | 96    | 7.19 | 4.47 | 117         | 167         | 228 | 262          | 0.34 | 0.39          | 252 | 380           | 103 | 130 | 40.87  | 34.21  | 308  | 472                  | 40  | 80                | 7.70        | 5.90          |
| Tot                  | al           | 457 | 582                 | 96   | 192   | 4.76 | 3.03 | 174         | 255         | 283 | 327          | 0.38 | 0.44          | 342 | 501           | 147 | 171 | 42.98  | 34.13  | 829  | 1525                 | 80  | 160               | 10.36       | 9.53          |
|                      | Kedougou     | 0   | 0                   | 48   | 96    | 0.00 | 0.00 | 0           | 0           | 0   | 0            | 0.00 | 0.00          | 0   | 0             | 0   | 0   | 0.00   | 0.00   | 1    | 0                    | 40  | 80                | 0.03        | 0.00          |
| Sudano-              | Saraya       | 5   | 0                   | 24   | 24    | 0.21 | 0.00 | 1           | 0           | 4   | 0            | 0.20 | 0.00          | 3   | 0             | 3   | 0   | 100    | 0.00   | 1    | 0                    | 20  | 20                | 0.05        | 0.00          |
| Guinean              | Velingara    | 0   | 0                   | 24   | 24    | 0.00 | 0.00 | 0           | 0           | 0   | 0            | 0.00 | 0.00          | 0   | 0             | 0   | 0   | 0.00   | 0.00   | 2    | 3                    | 60  | 40                | 0.03        | 0.08          |
|                      | Kolda        | 0   | 0                   | 24   | 24    | 0.00 | 0.00 | 0           | 0           | 0   | 0            | 0.00 | 0.00          | 0   | 0             | 0   | 0   | 0.00   | 0.00   | 14   | 9                    | 40  | 20                | 0.35        | 0.45          |
| Tot                  | al           | 5   | 0                   | 120  | 168   | 0.04 | 0.00 | 1           | 0           | 4   | 0            | 0.20 | 0.00          | 3   | 0             | 3   | 0   | 100    | 0.00   | 18   | 12                   | 160 | 160               | 0.11        | 0.08          |

Note: RS = rainy season; DS = dry season

| District     | Collec   | ted* | An. gaml             | niae sl             | An. funes          | stus s l 💷         | An. phar           | oensis            | An.<br>squame |    | An. rufipe         | <u> </u>           | An. ziema    | ni           | An. wello | omei — | An.nili |    | An. fla          | vicosta —         |
|--------------|----------|------|----------------------|---------------------|--------------------|--------------------|--------------------|-------------------|---------------|----|--------------------|--------------------|--------------|--------------|-----------|--------|---------|----|------------------|-------------------|
| District     | RS       | DS   | RS                   | DS DS               | RS                 | DS                 | RS                 | DS                | RS            | DS | RS                 | DS                 | RS           | DS           | RS        | DS     | RS      | DS | RS               | DS                |
| Richard Toll | 103      | 112  | 42<br>(40.78<br>%)   | 6<br>(5.36%)        | 41<br>(39.81<br>%) | 86<br>(76.79%<br>) | 15<br>(14.56<br>%) | 0%                | 0%            | 0% | 2<br>(1.94%)       | 0%                 | 1<br>(0.97%) | 4<br>(3.57%) | 0%        | 0%     | 0%      | 0% | 0%               | 0%                |
| Podor        | 131      | 218  | 90<br>(68.70<br>%)   | 186<br>(85.32<br>%) | 7<br>(5.34%)       | 8<br>(3.67%)       | 25<br>(19.08<br>%) | 3<br>(1.38%)      | 0%            | 0% | 5<br>(3.82%)       | 17<br>(7.80%)      | 4<br>(3.05%) | 0%           | 0%        | 0%     | 0%      | 0% | 2<br>(1.53<br>%) | 16<br>(7.34<br>%) |
| Total        | 234      | 330  | 132<br>(56.41<br>%)  | 192<br>(58.18<br>%) | 48<br>(20.51<br>%) | 94<br>(28.48%<br>) | 40<br>(17.09<br>%) | 3<br>(0.91%)      | 0%            | 0% | 7<br>(2.99%)       | 17<br>(5.15%)      | 5<br>(2.14%) | 4<br>(1.21%) | 0%        | 0%     | 0%      | 0% | 2<br>(0.85<br>%) | 16<br>(4.85<br>%) |
| Ranerou      | 40       | 87   | 34<br>(85.00<br>%)   | 75<br>(86.21<br>%)  | 0%                 | 7<br>(8.05%)       | 4<br>(10.00<br>%)  | 0%                | 0%            | 0% | 2<br>(5.00%)       | 5<br>(5.75%)       | 0%           | 0%           | 0%        | 0%     | 0%      | 0% | 0%               | 0%                |
| Linguere     | 34       | 176  | 32<br>(94.12<br>%)   | 176<br>(100%)       | 0%                 | 0%                 | 0%                 | 0%                | 0%            | 0% | 2<br>(5.88%)       | 0%                 | 0%           | 0%           | 0%        | 0%     | 0%      | 0% | 0%               | 0%                |
| Matam        | 132<br>9 | 158  | 1187<br>(89.32<br>%) | 134<br>(84.81<br>%) | 0%                 | 0%                 | 35<br>(2.63%)      | 2<br>(1.27%)      | 0%            | 0% | 107<br>(8.05%)     | 22<br>(13.92<br>%) | 0%           | 0%           | 0%        | 0%     | 0%      | 0% | 0%               | 0%                |
| Kanel        | 27       | 13   | 18<br>(66.67<br>%)   | 12<br>(92.31<br>%)  | 0%                 | 0%                 | 1<br>(3.70%)       | 0%                | 0%            | 0% | 8<br>(29.63<br>%)  | 1<br>(7.69%)       | 0%           | 0%           | 0%        | 0%     | 0%      | 0% | 0%               | 0%                |
| Bakel        | 43       | 66   | 32<br>(74.42<br>%)   | 57<br>(86.36<br>%)  | 0%                 | 0%                 | 1<br>(2.33%)       | 1<br>(1.52%)      | 0%            | 0% | 10<br>(23.26<br>%) | 8<br>(12.12<br>%)  | 0%           | 0%           | 0%        | 0%     | 0%      | 0% | 0%               | 0%                |
| Pikine       | 54       | 4    | 54<br>(100%)         | 4<br>(100%)         | 0%                 | 0%                 | 0%                 | 0%                | 0%            | 0% | 0%                 | 0%                 | 0%           | 0%           | 0%        | 0%     | 0%      | 0% | 0%               | 0%                |
| Tivaoune     | 229      | 1    | 228<br>(99.56<br>%)  | 1<br>(100%)         | 0%                 | 0%                 | 0%                 | 0%                | 0%            | 0% | 1<br>(0.44%)       | 0%                 | 0%           | 0%           | 0%        | 0%     | 0%      | 0% | 0%               | 0%                |
| Thies        | 1        | 0    | 1<br>(100%)          | 0%                  | 0%                 | 0 %                | 0%                 | 0%                | 0%            | 0% | 0%                 | 0%                 | 0%           | 0%           | 0%        | 0%     | 0%      | 0% | 0%               | 0%                |
| Total        | 175<br>7 | 505  | 1586<br>(90.27<br>%) | 459<br>(90.89<br>%) | 0%                 | 7<br>(1.39%)       | 41<br>(2.33%)      | 3<br>(0.59%)      | 0%            | 0% | 130<br>(7.40%)     | 36<br>(7.13%)      | 0%           | 0%           | 0%        | 0%     | 0%      | 0% | 0%               | 0%                |
| Dioffior     | 108<br>4 | -    | 1082<br>(99.81<br>%) | -                   | 0%                 | -                  | 2<br>(0.18%)       | -                 | 0%            | -  | 0%                 | -                  | 0%           | -            | 0%        | -      | 0%      | -  | 0%               | 0%                |
| Niakhar      | 224<br>8 | 0    | 2234<br>(99.38<br>%) | 0%                  | 0%                 | 0%                 | 0%                 | 0%                | 0%            | 0% | 14<br>(0.62%)      | 0%                 | 0%           | 0%           | 0%        | 0%     | 0%      | 0% | 0%               | 0%                |
| Koungheul    | 92       | 19   | 85<br>(92.39<br>%)   | 16<br>(84.21<br>%)  | 0%                 | 0%                 | 7<br>(7.61%)       | 3<br>(15.79<br>%) | 0%            | 0% | 0%                 | 0%                 | 0%           | 0%           | 0%        | 0%     | 0%      | 0% | 0%               | 0%                |

#### ANNEX I: SPECIES COMPOSITION OF THE ANOPHELINE FAUNA BY DISTRICTS, SITES, AND SEASON

| District             | Collec   | ted* | An. gamb             | iae s.l.             | An. funes            | tus s.l              | An. pharo     | oensis        | An.<br>squamo    | osus | An. rufipe    | es            | An. ziem     | ani          | An. wellco   | omei | An.nili           |                  | An. flav | ricosta |
|----------------------|----------|------|----------------------|----------------------|----------------------|----------------------|---------------|---------------|------------------|------|---------------|---------------|--------------|--------------|--------------|------|-------------------|------------------|----------|---------|
|                      | RS       | DS   | RS                   | DS                   | RS                   | DS                   | RS            | DS            | RS               | DS   | RS            | DS            | RS           | DS           | RS           | DS   | RS                | DS               | RS       | DS      |
| Nioro                | 150<br>4 | 1513 | 841(55.<br>91%)      | 218<br>(14.41<br>%)  | 633<br>(42.09<br>%)  | 1206<br>(79.71%<br>) | 1<br>(0.07%)  | 15<br>(0.99%) | 0%               | 0%   | 26<br>(1.73%) | 70<br>(4.63%) | 1<br>(0.07%) | 4<br>(0.26%) | 2<br>(0.13%) | 0%   | 0%                | 0%               | 0%       | 0%      |
| Ndoffane             | 147<br>2 | 1812 | 810<br>(55.03<br>%)  | 894<br>(49.34<br>%)  | 653<br>(44.36<br>%)  | 901<br>(49.72%<br>)  | 0%            | 1<br>(0.06%)  | 0%               | 0%   | 6<br>(0.41%)  | 16<br>(0.88%) | 0%           | 0%           | 3<br>(0.20%) | 0%   | 0%                | 0%               | 0%       | 0%      |
| Total                | 640<br>0 | 3344 | 5052<br>(78.94<br>%) | 1128<br>(33.73<br>%) | 1286<br>(20.09<br>%) | 1107<br>(33.10%<br>) | 10<br>(0.16%) | 19<br>(0.57%) | 0%               | 0%   | 46<br>(0.72%) | 86<br>(2.57%) | 1<br>(0.02%) | 4<br>(0.12%) | 5<br>(0.08%) | 0%   | 0%                | 0%               | 0%       | 0%      |
| Makacoulibanta<br>ng | 252      | 12   | 251<br>(99.60<br>%)  | 0%                   | 0%                   | 0%                   | 1<br>(0.40%)  | 0%            | 0%               | 0%   | 0%            | 0%            | 0%           | 0%           | 0%           | 0%   | 0%                | 0%               | 0%       | 0%      |
| Tambacounda          | 235<br>7 | 0    | 2344<br>(99.45<br>%) | 0%                   | 0%                   | 0%                   | 2<br>(0.08%)  | 0%            | 2<br>(0.08<br>%) | 0%   | 2<br>(0.08%)  | 0%            | 0%           | 0%           | 0%           | 0%   | 7<br>(0.30<br>%)  | 0%               | 0%       | 0%      |
| Dianke Makha         | 166<br>8 | 0    | 1667<br>(99.94<br>%) | 0%                   | 0%                   | 0%                   | 0%            | 0%            | 0%               | 0%   | 0%            | 0%            | 0%           | 0%           | 0%           | 0%   | 1<br>(0.06<br>%)  | 0%               | 0%       | 0%      |
| Total                | 427<br>7 | 12   | 4262<br>(99.65<br>%) | %                    | %                    | %                    | 1<br>(0.02%)  | %             | 2<br>(0.05<br>%) | %    | 2<br>(0.05%)  | %             | %            | %            | %            | %    | 8<br>(0.19<br>%)  | %                | %        | %       |
| Kedougou             | 311<br>3 | 33   | 3106<br>(99.78<br>%) | 31<br>(93.94<br>%)   | 1<br>(0.03%)         | 0%                   | 1<br>(0.03%)  | 2<br>(6.06%)  | 0%               | 0%   | 0%            | 0%            | 0%           | 0%           | 0%           | 0%   | 5<br>(0.16<br>%)  | 0%               | 0%       | 0%      |
| Saraya               | 920      | 7    | 895<br>(97.28<br>%)  | 7<br>(100%)          | 6<br>(0.65%)         | 0%                   | 2<br>(0.22%)  | 0%            | 0%               | 0%   | 0%            | 0%            | 0%           | 0%           | 0%           | 0%   | 17<br>(1.85<br>%) | 0%               | 0%       | 0%      |
| Salemata             | 470      | 15   | 462<br>(98.30<br>%)  | 12<br>(80%)          | 0%                   | 0%                   | 0%            | 0%            | 0%               | 0%   | 0%            | 0%            | 0%           | 0%           | 0%           | 0%   | 8<br>(1.70<br>%)  | 3<br>(20%)       | 0%       | 0%      |
| Velingara            | 108<br>9 | 35   | 1084<br>(99.54<br>%) | 30<br>(85.71<br>%)   | 2<br>(0.18%)         | 3<br>(8.57%)         | 2<br>(0.18)   | 1<br>(2.86%)  | 0%               | 0%   | 0%            | 1<br>(2.86%)  | 0%           | 0%           | 0%           | 0%   | 3<br>(0.28<br>%)  | 0%               | 0%       | 0%      |
| Kolda                | 149      | 30   | 133<br>(89.26<br>%)  | 21<br>(70.00<br>%)   | 14<br>(9.39%)        | 9<br>(30.00%<br>)    | 1<br>(0.67%)  | 0%            | 0%               | 0%   | 0%            | 0%            | 0%           | 0%           | 1<br>(0.67%) | 0%   | 0%                | 0%               | 0%       | 0%      |
| Oussouye             | 104<br>8 | 0    | 1046<br>(99.81<br>%) | 0%                   | 0%                   | 0%                   | 1<br>(0.10%)  | 0%            | 0%               | 0%   | 1<br>(0.10%)  | 0%            | 0%           | 0%           | 0%           | 0%   | 0%                | 0%               | 0%       | 0%      |
| Total                | 678<br>9 | 113  | 6726<br>(99.07<br>%) | 101<br>(89.38<br>%)  | 23<br>(0.34%)        | 12<br>(10.62%<br>)   | 7<br>(0.10%)  | 3<br>(2.65%)  | 0%               | %    | 1<br>(0.01%)  | 1<br>(0.88%)  | %            | %            | 1<br>(0.01%) | %    | 33<br>(0.49<br>%) | 3<br>(2.65<br>%) | %        | %       |

Note: RS = rainy season; DS = dry season \* = Specimen collected on human and by PSC, excepted for the district of Pikine where only PSC collection were carried out

| Legality            | ]  | Permeth | rin | Deltam             | ethrii | 1   | Alph | a-cyper | nethrine | Bend | iocarb | Pirimiph | os-methyl | PBO +        | Clothianidin | Chlofenapyr      |
|---------------------|----|---------|-----|--------------------|--------|-----|------|---------|----------|------|--------|----------|-----------|--------------|--------------|------------------|
| Locality            | 1X | 5X      | 10X | 1X                 | 5X     | 10X | 1X   | 5X      | 10X      | 1X   | 5X     | 1X       | 5X        |              |              |                  |
| Kanel               |    |         |     |                    |        |     |      |         |          |      |        |          |           |              |              |                  |
| Sadel               |    |         |     |                    |        |     |      |         |          |      |        |          |           |              |              |                  |
| Podor               |    |         |     |                    |        |     |      |         |          |      |        |          |           |              |              |                  |
| Ranerou             |    |         |     |                    |        |     |      |         |          |      |        |          |           |              |              |                  |
| Pikine              |    |         |     |                    |        |     |      |         |          |      |        |          |           | Delta        | 13.2 mg      | 100µg &<br>200µg |
| Diamnadio           |    |         |     |                    |        |     |      |         |          |      |        |          |           | Delta        | 13.2 mg      |                  |
| Niayes (Ndioukhane) |    |         |     |                    |        |     |      |         |          |      |        |          |           | Delta & Perm | 13.2 mg      | 100µg &<br>200µg |
| Dioffior            |    |         |     |                    |        |     |      |         |          |      |        |          |           |              |              |                  |
| Ndoffane            |    |         |     |                    |        |     |      |         |          |      |        |          |           | Delta        |              |                  |
| Nioro               |    |         |     |                    |        |     |      |         |          |      |        |          |           |              | 13.2 mg      |                  |
| Koungheul           |    |         |     |                    |        |     |      |         |          |      |        |          |           | Perm         | 13.2 mg      | 100µg &<br>200µg |
| Tambacounda         |    |         |     |                    |        |     |      |         |          |      |        |          |           | Perm         |              |                  |
| MakaColibantang     |    |         |     |                    |        |     |      |         |          |      |        |          |           | Perm         |              |                  |
| Salemata            |    |         |     | Notfully completed |        |     |      |         |          |      |        |          |           |              |              |                  |
| Saraya              |    |         |     |                    |        |     |      |         |          |      |        |          |           |              |              |                  |
| Velingara           |    |         |     |                    |        |     |      |         |          |      |        |          |           | Delta & Perm | 13.2 mg      |                  |
| Kolda               |    |         |     |                    |        |     |      |         |          |      |        |          |           |              |              |                  |
| Kedougou            |    |         |     |                    |        |     |      |         |          |      |        |          |           | Delta & Perm | 13.2 mg      | 100µg &<br>200µg |
| Oussouye /Mlomp     |    |         |     |                    |        |     |      |         |          |      |        |          |           | Perm         |              |                  |

#### ANNEX J-A: INSECTICIDE SUSCEPTIBILITY MONITORING AND INTENSITY OF RESISTANCE TO PYRETHROIDS

Tests performed

Tests not performed

NA

| Districts   | Р    | ermethr | in   |           | De   | ltameth | rin  |      |      | Alphacypermethrin |      |          |
|-------------|------|---------|------|-----------|------|---------|------|------|------|-------------------|------|----------|
| Districts   | 1 X  | 5X      | 10X  | INTENSITY | 1 X  | 5X      | 1 X  | 5X   | 10X  | INTENSITY         | 1 X  | 5X       |
| Pikine      | 5.8  | 73.5    | 81.3 | High      | 39.3 | 96      | 91.1 | High | 29.7 | 77                | 76   | High     |
| Diamnadio   | 2    | 76.3    | 98.4 | Moderate  | 21.4 | 93.7    | 92.3 | High | 8.7  | 71.7              | 93   | High     |
| Ndoffane    | 12   | 61.8    | -    | High      | 44.2 | 88.6    | 95.4 | High | 14.7 | 58.5              | -    | High     |
| Nioro       | 2.7  | -       | 100  | Moderate  | 98.1 | -       | -    | -    | 24.1 | -                 | 98.2 | Moderate |
| Tambacounda | 90.5 | 100     | -    | Low       | 93.8 | 100     | -    | Low  | 88.4 | -                 | -    | -        |
| Velingara   | 39.5 | 96.1    | 99   | Moderate  | 56.9 | 95.9    | 97.1 | High | 64.4 | 90.6              | 96.2 | High     |

#### ANNEX J-B: INTENSITY OF THE RESISTANCE TO PYRETHROIDS IN AN. GAMBIAE S.L. NATURAL POPULATION

### ANNEX K: BLOOD MEAL SOURCES AND ANTHROPOPHILIC RATE OF AN. GAMBIAE S.L. AND AN. FUNESTUS S.L. BY GEOGRAPHIC AREA (JANUARY 2019-JANUARY 2020)

|                   |     |     |      |    | An. | gaml | <i>iae</i> s.l. |     |     |          |           |     |      |    | An. | fune | stus |     |     |          |
|-------------------|-----|-----|------|----|-----|------|-----------------|-----|-----|----------|-----------|-----|------|----|-----|------|------|-----|-----|----------|
| Geographical zone | T   | NID | ¥L T |    | SIM | IPLE | i<br>r          | MI  | XT  | <b>A</b> | <b>'T</b> | NID | ¥L.T |    | SIN | 1PLE |      | MI  | ХT  | <b>A</b> |
|                   | 1   | ND  | Id*  | Н  | B   | S    | Ho              | H/A | A/A | Ar       | 1         | ND  | Id*  | Η  | B   | S    | Ho   | H/A | A/A | Ar       |
| Sahelian          | 25  | 0   | 25   | 4  | 5   | 1    | 7               | 5   | 3   | 0.36     | 0         | 0   | 12   | 6  | 0   | 2    | 0    | 4   | 0   | 0.83     |
| Sahelo-Sudanese   | 256 | 7   | 181  | 34 | 52  | 15   | 35              | 25  | 20  | 0.33     | -         | -   | -    | -  | -   | -    | -    | -   | -   | -        |
| Sudano-Sahelian   | 823 | 61  | 381  | 28 | 27  | 6    | 235             | 39  | 46  | 0.18     | 646       | 34  | 306  | 43 | 39  | 17   | 137  | 24  | 46  | 0.22     |
| Sudanese          | 244 | 6   | 119  | 58 | 15  | 3    | 17              | 16  | 10  | 0.62     | -         | -   | -    | -  | -   | -    | -    | -   | -   | -        |
| Sudano-Guinean    | 265 | 15  | 125  | 75 | 12  | 1    | 2               | 21  | 14  | 0.77     | 17        | 6   | 11   | 0  | 6   | 2    | 2    | 0   | 1   | 0.00     |

NOTE: T= TESTED; ID = NUMBER OF HOSTS SUCCESSFULLY IDENTIFIED; \* = IN SOME CASES MULTIPLE HOSTS IDENTIFIED IN ONE MOSQUITO; ND= NOT DETERMINED (BLOOD MEALS WERE NEGATIVE FOR ALL THE ANTIBODIES TESTED). H= HUMAN; B= BOVINE; S= SHEEP (OVINE); HO= HORSE; H/A= HUMAN/ANIMAL; A/A= ANIMAL/ANIMAL; AR= ANTHROPOPHILIC RATE

# ANNEX L: TROPHIC PROFILE AND ANTHROPOPHILIC RATES OF AN. PHAROENSIS AND AN. RUFIPES FEMALES BY GEOGRAPHIC AREA AND BY DISTRICT

|                   |              |   |     | An.  | pharoe | nsis |    |   |     | At          | n. rufipe | <i>S</i> |    |
|-------------------|--------------|---|-----|------|--------|------|----|---|-----|-------------|-----------|----------|----|
| Geographical zone | Districts    |   | SIN | 1PLI | Ξ      | M    | IX |   | SIN | <b>IPLE</b> |           | M        | IX |
|                   |              | Η | B   | S    | Ho     | HA   | AA | Η | В   | S           | Ho        | HA       | AA |
| Sahelian          | Richard Toll | 1 | 0   | 0    | 1      | 0    | 0  | - | -   | -           | -         | -        | -  |
| Sanchan           | Podor        | - | -   | -    | -      | -    | -  | 1 | 2   | 0           | 0         | 0        | 0  |
|                   | Matam        | 0 | 0   | 1    | 0      | 1    | 0  | 1 | 20  | 11          | 12        | 3        | 6  |
|                   | Kanel        | - | -   | -    | -      | -    | -  | 0 | 1   | 1           | 0         | 0        | 2  |
|                   | Bakel        | - | -   | -    | -      | -    | -  | 1 | 1   | 1           | 1         | 1        | 0  |
| Sahelo-Sudanese   | Linguere     | - | -   | -    | -      | -    | -  | 1 | 1   | 0           | 0         | 0        | 0  |
|                   | Niakhar      | - | -   | -    | -      | -    | -  | 0 | 0   | 0           | 1         | 0        | 0  |
|                   | Nioro        | 1 | -   | -    | -      | -    | _  | 0 | 4   | 0           | 2         | 1        | 1  |
|                   | Ndoffane     | 0 | 1   | 2    | 0      | 1    | 1  | _ | -   | -           | -         | -        | -  |
| Sudano-Sahelian   | Tambacounda  | 0 | 1   | 0    | 0      | 0    | 0  | _ | -   | -           | -         | -        | -  |

NOTE: H= HUMAN; A= ANIMAL; H/A= HUMAN/ANIMAL; A/A= ANIMAL/ANIMAL

### ANNEX M: TROPHIC PROFILE AND ANTHROPOPHILIC RATES OF AN. GAMBIAE S.L. AND AN. FUNESTUS S.L. FEMALES BY GEOGRAPHIC AREA AND BY DISTRICT

|                   |                  |     |    |     | A  | n. gai | nbia | e s.l. |     |     |          |     |     |     |    | An. fi | ines | tus _ |     |     |          |
|-------------------|------------------|-----|----|-----|----|--------|------|--------|-----|-----|----------|-----|-----|-----|----|--------|------|-------|-----|-----|----------|
| Geographical zone | Districts        | Т   | ND | Id* |    | SIM    | PLE  | ,      | M   | IX  | <b>A</b> | Т   | NID | Id* |    | SIM    | PLE  | 1     | M   | IX  | <b>A</b> |
|                   |                  | 1   | ND | 10* | Η  | B      | S    | Ho     | H/A | A/A | Ar       | 1   | ND  | 10* | Η  | B      | S    | Ho    | H/A | A/A | Ar       |
| Sahelian          | Richard Toll     | 6   | 0  | 6   | 1  | 2      | 1    | 1      | 1   | 0   | 0.33     |     | 0   | 10  | 6  | 0      | 1    | 0     | 3   | 0   | 0.9      |
| Sanenan           | Podor            | 19  | 0  | 19  | 3  | 3      | 0    | 6      | 4   | 3   | 0.37     |     | 0   | 2   | 0  | 0      | 1    | 0     | 1   | 0   | 0.5      |
|                   | Matam            | 56  | 0  | 56  | 5  | 31     | 2    | 9      | 1   | 8   | 0.11     |     |     |     |    |        |      |       |     |     |          |
|                   | Kanel            | 10  | 0  | 10  | 1  | 4      | 3    | 0      | 0   | 2   | 0.1      |     |     |     |    |        |      |       |     |     | 1        |
|                   | Bakel            | 15  | 0  | 15  | 2  | 2      | 5    | 4      | 1   | 1   | 0.2      |     |     |     |    |        |      |       |     |     | ł        |
| Sahelo-Sudanese   | Ranerou          | 19  | 0  | 19  | 6  | 3      | 1    | 6      | 2   | 1   | 0.42     |     |     |     |    |        |      |       |     |     | ł        |
|                   | Linguere         | 13  | 0  | 13  | 1  | 3      | 1    | 1      | 7   | 0   | 0.62     |     |     |     |    |        |      |       |     |     | ł        |
|                   | Pikine           | 19  | 1  | 9   | 4  | 0      | 1    | 0      | 4   | 0   | 0.89     |     |     |     |    |        |      |       |     |     | ł        |
|                   | Tivaoune         | 124 | 6  | 59  | 15 | 9      | 2    | 15     | 10  | 8   | 0.42     |     |     |     |    |        |      |       |     |     | ł        |
|                   | Diofior          | 121 | 5  | 58  | 3  | 2      | 0    | 39     | 9   | 5   | 0.21     |     |     |     |    |        |      |       |     |     | ł        |
|                   | Niakhar          | 114 | 14 | 50  | 0  | 2      | 0    | 36     | 4   | 8   | 0.08     |     |     |     |    |        |      |       |     |     | 1        |
|                   | Koungheul        | 48  | 0  | 24  | 4  | 4      | 0    | 11     | 2   | 3   | 0.25     |     |     |     |    |        |      |       |     |     |          |
| Sudano-Sahelian   | Kaffrine         | 2   | 0  | 1   | 0  | 0      | 0    | 1      | 0   | 0   | 0        |     |     |     |    |        |      |       |     |     | ł        |
|                   | Malem Hoddar     | 1   | 1  | 0   | 0  | 0      | 0    | 0      | 0   | 0   | 0        |     |     |     |    |        |      |       |     |     | ł        |
|                   | Nioro            | 215 | 11 | 102 | 9  | 4      | 0    | 58     | 10  | 21  | 0.19     | 396 | 28  | 184 | 19 | 29     | 9    | 81    | 11  | 35  | 0.16     |
|                   | Ndoffane         | 325 | 31 | 147 | 12 | 15     | 6    | 91     | 14  | 9   | 0.18     | 250 | 6   | 122 | 24 | 10     | 8    | 56    | 13  | 11  | 0.3      |
|                   | Makacoulibantang | 74  | 2  | 36  | 21 | 3      | 0    | 10     | 2   | 0   | 0.64     |     |     |     |    |        |      |       |     |     | ł        |
| Sudanese          | Tambacounda      | 81  | 1  | 40  | 19 | 9      | 1    | 1      | 5   | 5   | 0.6      |     |     |     |    |        |      |       |     |     | l        |
|                   | Dianke Makha     | 89  | 3  | 43  | 18 | 3      | 2    | 6      | 9   | 5   | 0.63     |     |     |     |    |        |      |       |     |     | ł        |
|                   | Kedougou         | 52  | 0  | 26  | 18 | 2      | 0    | 1      | 4   | 1   | 0.85     | 1   | 0   | 1   | 0  | 1      | 0    | 0     | 0   | 0   | 0        |
|                   | Saraya           | 17  | 1  | 8   | 1  | 1      | 0    | 0      | 3   | 3   | 0.5      |     |     |     |    |        |      |       |     |     |          |
| Sudano-Guinean    | Salemata         | 36  | 0  | 18  | 15 | 0      | 0    | 0      | 3   | 0   | 1        |     |     |     |    |        |      |       |     |     |          |
| Sudano-Guinean    | Velingara        | 88  | 2  | 43  | 25 | 3      | 0    | 0      | 8   | 7   | 0.77     |     |     |     |    |        |      |       |     |     |          |
|                   | Kolda            | 38  | 8  | 15  | 2  | 6      | 1    | 1      | 2   | 3   | 0.27     | 16  | 6   | 10  | 0  | 5      | 2    | 2     | 0   | 1   | 0        |
|                   | Oussouye         | 34  | 4  | 15  | 14 | 0      | 0    | 0      | 1   | 0   | 1        |     |     |     |    |        |      |       |     |     | l        |

NOTE: T = TESTED; ID = NUMBER OF HOSTS SUCCESSFULLY IDENTIFIED; ND= NOT DETERMINED (BLOOD MEALS WERE NEGATIVE FOR ALL THE ANTIBODIES TESTED).; H= HUMAN; B= BOVINE; S= SHEEP (OVINE); HO = HORSE; H/A = HUMAN/ANIMAL; A/A = ANIMAL/ANIMAL; AR = ANTHROPOPHILIC RATE

\* = IN SOME CASES MULTIPLE HOSTS IDENTIFIED IN ONE MOSQUITO.

### ANNEX N: SPOROZOITE INDEXES OF AN. GAMBIAE S.L. AND AN. FUNESTUS S.L. BY GEOGRAPHIC AREA AND DISTRICT

| 7               |     | An. gambia | ne s.l. |     | An. funes | tus   |
|-----------------|-----|------------|---------|-----|-----------|-------|
| Zone/District   | Т   | P          | SR      | Т   | Р         | SR    |
| Sahelian        |     |            |         |     |           |       |
| Richard Toll    | 30  | 3          | 0.1     | 61  | 2         | 0.033 |
| Podor           | 77  | 0          | 0       | 2   | 0         | 0     |
| Sahelo-Sudanese |     |            |         |     |           |       |
| Matam           | 51  | 3          | 0.059   | -   | -         | -     |
| Kanel           | 5   | 0          | 0       | -   | -         | -     |
| Bakel           | 32  | 1          | 0.031   | -   | -         | -     |
| Ranerou         | 32  | 2          | 0.063   | -   | -         | -     |
| Linguere        | 38  | 1          | 0.026   | -   | -         | -     |
| Pikine          | 19  | 0          | 0       | -   | -         | -     |
| Tivaoune        | 14  | 0          | 0       | -   | -         | -     |
| Sudano-Sahelian |     |            |         |     |           |       |
| Diofior         | 59  | 0          | 0       | -   | -         | -     |
| Niakhar         | 62  | 0          | 0       | -   | -         | -     |
| Koungheul       | 26  | 0          | 0       | -   | -         | -     |
| Nioro           | 51  | 0          | 0       | 150 | 1         | 0.007 |
| Ndoffane        | 158 | 0          | 0       | 189 | 2         | 0.011 |
| Sudanese        |     |            |         |     |           |       |
| Makacolibantang | 85  | 2          | 0.024   | -   | -         | -     |
| Tambacounda     | 94  | 2          | 0.021   | -   | -         | -     |
| Dianke Makha    | 66  | 1          | 0.015   | -   | -         | -     |
| Sudano-Guinean  |     |            |         |     |           |       |
| Kedougou        | 134 | 4          | 0.030   | -   | -         | -     |
| Saraya          | 91  | 3          | 0.033   | 2   | 0         | 0     |
| Salemata        | 57  | 3          | 0.053   | -   | -         | -     |
| Velingara       | 132 | 1          | 0.008   | -   | -         | -     |
| Kolda           | 64  | 4          | 0.063   | -   | -         | -     |
| Oussouye        | 69  | 0          | 0       | -   | -         | -     |

Note: T = total tested; P = positive; SR = sporozoite rates

#### ANNEX O: MONTHLY INFECTION RATE OF VECTOR SPECIES (JANUARY 2019-JANUARY 2020)

|                   | Januar | y-19 | F | ebruary | Mar | ch | Ma | ay | Jul | ly | Augu | ist | Septem | ber | Octo | ber | Noven | nber | Decemb | orer19 | Janua | ary-20 |
|-------------------|--------|------|---|---------|-----|----|----|----|-----|----|------|-----|--------|-----|------|-----|-------|------|--------|--------|-------|--------|
| Zone              | Т      | Р    | Т | Р       | Т   | Р  | Т  | P  | Т   | Р  | Т    | Р   | Т      | Р   | Т    | Р   | Т     | Р    | Т      | Р      | Т     | Р      |
| An. funestus s.l. |        |      |   |         |     |    |    |    |     |    |      |     |        |     |      |     |       |      |        |        |       |        |
| Sudano-Sahelian   | 59     | 0    |   |         | 71  | 1  | 53 | 1  | 56  | 0  |      |     | 71     | 0   |      |     | 29    | 1    |        |        |       | 1      |
| Sudano-Guinean    |        |      |   |         |     |    |    |    |     |    |      |     | 2      | 0   |      |     |       |      |        |        |       | 1      |
| An. gambiae s.l.  |        |      |   |         |     |    |    |    |     |    |      |     |        |     |      |     |       |      |        |        |       |        |
| Sahelo-Sudanese   |        |      |   |         |     |    |    |    |     |    |      |     |        |     | 14   | 0   |       |      |        |        |       | 1      |
| Sudano-Sahelian   | 38     | 0    |   |         | 34  | 0  | 29 | 0  | 57  | 0  |      |     | 168    | 0   |      |     | 29    | 0    | 1      | 0      |       |        |
| Sudanese          |        |      |   |         |     |    |    |    | 70  | 3  |      |     | 170    | 2   |      |     |       |      | 5      | 0      |       |        |
| Sudano-Guinean    |        |      | 2 | 0       |     |    |    |    | 10  | 0  | 117  | 0   | 257    | 6   | 118  | 5   |       |      | 36     | 4      | 7     | 0      |

Note: T: tested; P: positive

# ANNEX P: INFECTION RATE OF AN. PHAROENSIS AND AN. NILI BY GEOGRAPHIC AREA

| Zone/District   |        | An. pharoensis |    |   | An. nili |    |
|-----------------|--------|----------------|----|---|----------|----|
| Zone/District   | Tested | Positive       | SI | Т | Р        | SI |
| Sahelian        |        |                |    |   |          |    |
| Richard Toll    | 12     | 0              | 0  | - | -        | -  |
| Podor           | 22     | 0              | 0  | - | -        | -  |
| Sahelo-Sudanese |        |                |    |   |          |    |
| Matam           | 37     | 0              | 0  | - | -        | -  |
| Kanel           | 1      | 0              | 0  | - | -        | -  |
| Bakel           | -      | -              | -  | - | -        | -  |
| Ranerou         | 2      | 0              | 0  | - | -        | -  |
| Linguere        | -      | -              | -  | - | -        | -  |
| Pikine          | -      | -              | -  | - | -        | -  |
| Tivaoune        | -      | -              | -  | - | -        | -  |
| Sudano-Sahelian |        |                |    |   |          |    |
| Diofior         | -      | -              | -  | - | -        | -  |
| Niakhar         | -      | -              | -  | - | -        | -  |
| Koungheul       | 8      | 0              | -  | - | -        | -  |
| Nioro           | 13     | 0              | -  | - | -        | -  |
| Ndoffane        | 1      | 0              | -  | - | -        | -  |
| Sudanese        |        |                |    |   |          |    |
| Makacolibantang | -      | -              | -  | _ | -        | -  |
| Tambacounda     | -      | -              | -  | - | -        | -  |
| Dianke Makha    | -      | -              | -  | 1 | 0        | -  |
| Sudano-Guinean  |        |                |    |   |          |    |
| Kedougou        | -      | -              | -  | 4 | 0        | -  |
| Saraya          | 1      | 0              | -  | 3 | 0        | -  |
| Salemata        | -      | -              | -  | 2 | 0        | -  |
| Velingara       | 3      | 0              | -  | 1 | 0        | -  |
| Kolda           | -      | -              | -  | - | -        | -  |
| Oussouye        | -      | -              | -  | - | -        | -  |

#### ANNEX Q: ENTOMOLOGICAL INOCULATION RATE PER NIGHT OF AN. GAMBIAE S.L. FEMALES IN THE SURVEYED SITES (JANUARY 2019-JANUARY 2020)

| C                | District        | Iı     | ndoor |      | 0     | utdoo | r _  | Total  |        |       |
|------------------|-----------------|--------|-------|------|-------|-------|------|--------|--------|-------|
| Geographic zone  | District        | HBR    | CSI   | EIR  | HBR   | CSI   | EIR  | HBR    | CSI    | EIR   |
| Sahelian         | Richard Toll    | 0.5    |       |      | 0.333 |       |      | 0.417  | 0.1    | 0.042 |
| Sanenan          | Podor           | 0.994  |       |      | 1.15  |       |      | 1.072  |        |       |
|                  | Matam           | 0.783  |       |      | 0.633 |       |      | 0.708  | 0.059  | 0.042 |
|                  | Kanel           | 0.111  |       |      | 0.028 |       |      | 0.070  |        |       |
|                  | Bakel           | 0.544  |       |      | 0.328 |       |      | 0.436  | 0.031  | 0.014 |
| Sahelo-Sudanese  | Ranerou         | 0.589  |       |      | 0.3   |       |      | 0.445  | 0.063  | 0.028 |
| Sancio Sucianese | Linguere        | 0.617  |       |      | 0.456 |       |      | 0.537  | 0.026  | 0.014 |
|                  | Pikine          | 0.5    |       |      | 0.29  |       |      | 0.396  |        |       |
|                  | Tivaoune        | 0.188  |       |      | 0.17  |       |      | 0.177  |        |       |
|                  | Diofior         | 17.667 |       |      | 12.13 |       |      | 14.896 |        |       |
|                  | Niakhar         | 3.875  |       |      | 2.63  |       |      | 3.25   |        |       |
| Sudano-Sahelian  | Koungheul       | 0.222  |       |      | 0.14  |       |      | 0.181  |        |       |
|                  | Nioro           | 0.375  |       |      | 0.6   |       |      | 0.486  |        |       |
|                  | Ndoffane        | 1.375  |       |      | 2.53  |       |      | 1.951  |        |       |
|                  | Makacolibantang | 1.917  | 0.03  | 0.05 | 2     | 0.02  | 0.04 | 1.958  | 0.0235 | 0.05  |
| Sudanese         | Tambacounda     | 26.938 |       |      | 20.06 | 0.04  | 0.89 | 23.5   | 0.0213 | 0.5   |
|                  | Dianke Makha    | 20.611 | 0.03  | 0.69 | 22.17 |       |      | 21.389 | 0.0152 | 0.32  |
|                  | Kedougou        | 26.347 | 0.03  | 0.77 | 16.56 | 0.03  | 0.5  | 21.451 | 0.03   | 0.64  |
|                  | Saraya          | 14.542 | 0.05  | 0.7  | 22.58 |       |      | 18.563 | 0.033  | 0.61  |
|                  | Salemata        | 9.333  | 0.07  | 0.64 | 9.42  | 0.04  | 0.34 | 9.375  | 0.0526 | 0.49  |
| Sudano-Guinean   | Velingara       | 7.5    | 0.01  | 0.11 | 9     |       |      | 8.25   | 0.0076 | 0.06  |
|                  | Kolda           | 1.972  | 0.07  | 0.14 | 1.17  | 0.04  | 0.05 | 1.569  | 0.0625 | 0.1   |
|                  | Oussouye        | 11.972 |       |      | 16.47 |       |      | 14.222 |        |       |

Note: HBR = human biting rate, CSI = circumsporozoite index, EIR = entomological inoculation rate (b/p/n)

#### ANNEX R: ENTOMOLOGICAL INOCULATION RATE PER NIGHT OF AN. FUNESTUS S.L. FEMALES IN THE DIFFERENT SITES MONITORED (JANUARY 2019-JANUARY 2020)

| District     | Indoor   |         |        |            | Outdoor |       |            |            |            | Total    |       |
|--------------|----------|---------|--------|------------|---------|-------|------------|------------|------------|----------|-------|
| District     | HBR      | SR      | EIR    |            | HBR     | SR    | EIR        |            | HBR        | SR       | EIR   |
| Richard Toll | 0.561    |         |        |            | 0.95    |       |            |            | 0.756      | 0.033    | 0.025 |
| Podor        | 0.028    | 0       | 0      |            | 0.056   | 0     | 0          |            | 0.042      | 0        | 0     |
| Nioro        | 2.014    | 0.01    | 0.02   |            | 1.67    | 0     | 0          |            | 1.84       | 0.0067   | 0.01  |
| Ndoffane     | 3.944    | 0       | 0      |            | 6.81    | 0.02  | 0.13       |            | 5.375      | 0.0106   | 0.06  |
| Saraya       | 0.042    | 0       | 0      |            | 0.17    | 0     | 0          |            | 0.104      | 0        | 0     |
| HBR = Hu     | man Biti | ng Rate | SR = S | Sporozoite | rates   | EIR = | Entomologi | cal Inocul | ation Rate | e(b/p/n) |       |

### ANNEX S: MONTHLY ENTOMOLOGICAL INOCULATION RATE OF VECTOR SPECIES (JANUARY 2019-JANUARY 2020)

| Zone              | January-19 | February | March | May   | July  | August | September | October | November |
|-------------------|------------|----------|-------|-------|-------|--------|-----------|---------|----------|
| An. funestus s.l. |            |          |       |       |       |        |           |         |          |
| Sudano-Sahelian   | 0          | 0        | 0.058 | 0.015 | 0     | 0      | 0         | 0       | 0.069    |
| Sudano-Guinean    | 0          | 0        | 0     | 0     | 0     | 0      | 0         | 0       | 0        |
| An. gambiae s.l.  |            |          |       |       |       |        |           |         |          |
| Sahelo-Sudanese   | 0          | 0        | 0     | 0     | 0     | 0      | 0         | 0       | 0        |
| Sudano-Sahelian   | 0          | 0        | 0     | 0     | 0     | 0      | 0         | 0       | 0        |
| Sudanese          | 0          | 0        | 0     | 0     | 0.042 | 0      | 0.631     | 0       | 0        |
| Sudano-Guinean    | 0          | 0        | 0     | 0     | 0     | 0      | 0.913     | 0.259   | 0        |

#### ANNEX T: DISTRIBUTION OF THE AN. GAMBIAE COMPLEX MEMBERS

| Geographic zone | Tota<br>1 | Hybrid An. coluzzii/An.<br>gambiae | An.<br>arabiensis | An.<br>coluzzii | An.<br>gambiae | An.<br>melas |
|-----------------|-----------|------------------------------------|-------------------|-----------------|----------------|--------------|
| Sahelian        | 75        | -                                  | 73 (97.33)        | -               | 2 (2.67)       | -            |
| Sahelo-Sudanese | 242       | -                                  | 238 (98.35)       | -               | 4 (1.65)       | -            |
| Sudano-sahelien | 803       | -                                  | 771 (96.01)       | 13 (1.62)       | 13 (1.62)      | 6 (0.75)     |
| Sudanese        | 359       | 2 (0.56)                           | 149 (41.50)       | 12 (3.34)       | 196 (54.60)    | -            |
| Sudano-Guinean  | 675       | 8 (1.19)                           | 181 (26.81)       | 39 (5.78)       | 447 (66.22)    | -            |

# ANNEX U: AN. GAMBIAE S.L. SPECIES COMPOSITION IN THE SURVEYED DISTRICTS

| Geographic<br>zone  |              | Tot<br>al | An. coluzzii / An.<br>gambiae<br>(%) | An.<br>arabiensis<br>(%) | An.<br>coluzzii<br>(%) | An.<br>gambiae<br>(%) | An.<br>melas<br>(%) |
|---------------------|--------------|-----------|--------------------------------------|--------------------------|------------------------|-----------------------|---------------------|
| Sahelian            | Richard Toll | 24        | -                                    | 24 (100)                 | -                      | 0                     | -                   |
| Sanenan             | Podor        | 51        | -                                    | 49 (96.08)               | -                      | 2 (3.92)              | -                   |
|                     | Matam        | 36        | -                                    | 33 (91.67)               | -                      | 3 (8.33)              | -                   |
|                     | Kanel        | 5         | -                                    | 5 (100)                  | -                      | 0                     | -                   |
|                     | Bakel        | 28        | -                                    | 28 (100)                 | -                      | 0                     | -                   |
| Sahelo-<br>Sudanese | Ranerou      | 31        | -                                    | 30 (96.77)               | -                      | 1 (3.23)              | -                   |
| ouclanese           | Linguere     | 26        | -                                    | 26 (100)                 | -                      | 0                     | -                   |
|                     | Pikine       | 32        | -                                    | 32 (100)                 | -                      | -                     | -                   |
|                     | Tivaoune     | 84        | -                                    | 84 (100)                 | -                      | -                     | -                   |
|                     | Diofior      | 120       | -                                    | 115 (95.83)              | 2 (1.67)               | 3 (2.5)               | -                   |
| Sudano-<br>sahelien | Koungheul    | 53        | -                                    | 46 (86.79)               | 6 (11.32)              | 1 (1.89)              | -                   |
| Sanchell            | Niakhar      | 125       | -                                    | 124 (99.2)               | -                      | 1 (0.8)               | -                   |

|          | Ndoffane             | 329 | -        | 319 (96.96) | 3 (0.91)   | 1 (0.3)     | 6 (1.83) |
|----------|----------------------|-----|----------|-------------|------------|-------------|----------|
|          | Nioro                | 176 | -        | 167 (94.89) | 2 (1.14)   | 7 (3.97)    | -        |
|          | Tambacounda          | 132 | -        | 59 (44.7)   | 6 (4.55)   | 67 (50.75)  | -        |
| Sudanese | Makakoulibant<br>ang | 123 | 2 (1.63) | 59 (47.97)  | 5 (4.07)   | 57 (46.33)  | -        |
|          | Diankhe<br>Makha     | 104 | -        | 31 (29.81)  | 1 (0.96)   | 72 (69.23)  | -        |
|          | Kedougou             | 166 | -        | 36 (21.69)  | 2 (1.2)    | 128 (77.11) | -        |
|          | Kolda                | 85  | 1 (1.18) | 29 (34.12)  | 8 (9.41)   | 47 (55.29)  | -        |
| Sudano-  | Saraya               | 77  | 2 (2.6)  | 23 (29.87)  | 11 (14.29) | 41 (53.24)  | -        |
| Guinean  | Oussouye             | 88  | -        | 13 (14.77)  | 7 (7.95)   | 68 (77.28)  | -        |
|          | Salemata             | 85  | 5 (5.88) | 12 (14.12)  | 1 (1.18)   | 67 (78.82)  | -        |
|          | Velingara            | 174 | -        | 68 (39.08)  | 10 (5.75)  | 96 (55.17)  | -        |