

PRESIDENT'S MALARIA INITIATIVE

PMI | Africa IRS (AIRS) Project Indoor Residual Spraying (IRS 2) Task Order Six

SENEGAL ENTOMOLOGICAL MONITORING REPORT JULY 2015 – NOVEMBER 2015

Recommended Citation: The President's Malaria Initiative (PMI)/Africa Indoor Residual Spraying Project. April 2016. Senegal Entomological Monitoring, 2016. Bethesda, MD. PMI Africa IRS (AIRS) Project Indoor Residual Spraying (IRS 2) Task Order Six, Abt Associates Inc. Contract No. and Task order: GHN-I-00-09-00013 & AID- OAA-TO-14-00035 Submitted to: United States Agency for International Development/PMI

Abt Associates Inc. 1 4550 Montgomery Avenue 1 Suite 800 North Abt 1 Bethesda, Maryland 20814 1 T. 301.347.5000 1 F. 301.913.9061 1 www.abtassociates.com

SENEGAL ENTOMOLOGICAL MONITORING REPORT

CONTENTS

Co	ontents	v
Ac	ronyms	ix
Ex	ecutive Summary	xi
١.	Introduction	I
2.	Methodology	
	 2.1 Districts and sentinel villages for the 2015 campaign 2.2 Activities Carried Out 2.3 Effectiveness of Indoor Residual Spraying 2.4 Monitoring Vector Dynamics 2.5 Insecticides Sprayed 2.6 WHO susceptibility tests 2.7 CDC bottle bioassays for resistance monitoring 2.8 Lab molecular analyses 	7 9 9 9 9 9
3.	Results	. 11
	 3.1 Residual effectiveness of insecticide spraying against a susceptible strain of Anopheles gambiae s.s. in cone bioassay 3.1.1 Koungheul District 3.1.2 Koumpentoum District 3.1.3 Malem Hodar District 3.1.4 Nioro District 	13 13 13
	3.2 Vector Population Dynamics in IRS Districts	. 17 17
	3.2.2 Koumpentoum District	
	3.2.3 Malem Hodar District	
	3.2.4 Nioro District	27
	3.3 Unsprayed Districts	
	3.3.2 Kedougou District	33
	3.3.3 Tambacounda District	34
	3.3.4 Districts in north and east-central Senegal	
	3.3.5 Niayes (September and November 2015)	
	3.3.6 Flooded areas in the suburbs of Dakar (Pikine and Guediawaye)	
	3.3.7 Guinguinéo District (October 2015)	
	3.3.8 Richard-Toll (October 2015)	39
	3.4 Susceptibility of malaria vectors to insecticides with impregnated papers3.5 Susceptibility of malaria vectors to insecticides with CDC bottle test	

4.	CONCLUSION	43
Ann	nex A: Field visits carried out in the rainy season of July-November 2015	44

LIST OF TABLES

Table 1: Sentinel villages selected in the IRS districts, June 2015-March 2016Table 2: Sentinel villages selected in unsprayed districts6
Table 3: IRS treatment dates and timing of cone bioassay in the IRS sentinel villages in 2015
Table 4: Residual performance of IRS against a susceptible strain of An. gambiae s.s.during the rainy season of June-November 201511
Table 5: Effectiveness of pirimiphos-methyl (Actellic CS 300) against a susceptibleinsectary strain of An. gambiae s.s. according to substrate type in the District ofKoungheul
Table 6: Effectiveness of pirimiphos-methyl (Actellic CS 300) against a susceptible insectary strain of An. gambiae s.s. according to substrate type in the district of Koumpentoum
Table 7: Effectiveness of pirimiphos-methyl (Actellic CS 300) against a susceptibleinsectary strain of An. gambiae s.s. according to substrate type in the district ofMalem Hodar15
Table 8: Effectiveness of pirimiphos-methyl (Actellic CS 300) against a susceptible of An.gambiae s.s. according to substrate type in the district of Nioro
Table 9: Effectiveness of bendiocarb (Ficam WG 10%) against a susceptible insectarystrain of An. gambiae s.s. according to substrate type in the district of Nioro
Table 10: Species composition according to the sampling method during the rainy season (Koungheul)
Table 11 a: Human biting rate and indoor resting density of Anopheles gambiae s.l. females in Koungheul district (combined results for sprayed and unsprayed villages)
Table 11b: Human biting rate (HBR) for Anopheles gambiae s.l. in sprayed and unsprayed villages (Koungheul)18
Table 11c: Indoor resting density for Anopheles gambiae s.l. females in sprayed and unsprayed villages (Kongheul)18
Table 12: Parity rate of Anopheles gambiae s.l. in sprayed and unsprayed villages inKoungheul district20
Table 13: Species composition according to the sampling method during the rainy season in Koumpentoum district
Table 14a: Human biting rate and indoor resting density of Anopheles gambiae s.l.females during the rainy season in Koumpentoum district (combined for sprayed and unsprayed villages)21
Table 14b: Human biting rate (HBR) for Anopheles gambiae s.l. in sprayed and unsprayed villages in Koumpentoum 22
Table 14c: Indoor resting density for Anopheles gambiae females in sprayed and unsprayed villages in Koumpentoum 22 Table 15: Darity and the second secon
Table 15: Parity rate of human biting female Anopheles gambiae s.l.collected by HLCin treated and control villages in the district of Koumpentoum23

Table 16: Species composition of the mosquito according to the sampling method in	
the district of Malem Hodar	
in Malem Hodar district (Combined for sprayed and unsprayed villages)	
Table 16 b: Human biting rate of Anopheles gambiae s.l. in treated and Control villages in Malem Hodar district 25	
in Malem Hodar district	
unsprayed villages in Malem Hodar	
Table 17: Parity rate of female Anopheles gambiaes.l. collected by HLC in treated and	
control villages in the district of Malem Hodar	
Table 18: Species composition of the mosquito according to the sampling method in	
the district of Nioro	
Table 19 a: Human biting rate and indoor resting densitities of Anopheles gambiae s.l. in	
Nioro district (combined for sprayed and unsprayed villages)	
Table 19 b: Human biting rate of Anopheles gambiae s.l. in treated villages and controls	
in Nioro district	
Table 19 c: Indoor resting density of Anopheles gambiae s.l. females in sprayed and	
unsprayed villages in Nioro district	,
Table 19 d: Human biting rate of Anopheles funestus s.l. in Nioro District 31	
Table 20: Parity rate of female Anopheles gambiae s.l. between treated and control	
villages in NIORO district	
Table 21: Species composition according to the sampling method in the district of	
Vélingara	
Table 22 a: Human biting rate and indoor resting densitities for Anopheles gambiae s.l.	
in Vélingara district (Aug-October 2015)	
Table 22 b: Parity rate for Anopheles gambiae s.l. in Vélingara district (Aug-October	
2015)	
Table 23: Species composition of the mosquito according to the sampling method in	
the district of Kédougou	
Table 24 a: Human biting rate and indoor resting densitities for Anopheles gambiae s.l.	
in Kedougou district	
Table 24 b: Parity rate of female Anopheles gambiae s.l. in unsprayed villages in the	
district of Kédougou	
Vector surveillance was carried out only in October. Anopheles gambiae s.l. was the	
main species caught in HLC and indoor PSC in the district of Tambacounda (Table	
25).Table 25: Species composition of the mosquito according to the sampling	
method in the district of Tambacounda	
Table 26: Human biting rates, PSC resting catch and parity rate of An. gambiae s.l. in	
Tambacounda district	
Table 27: Species composition according to the sampling method in North and East-	
central districts of Senegal	J
northern and east-central districts	,
Table 28 b: Indoor resting Anopheles species composition in the villages of the north	
and east-central districts of Senegal in October-November 2015. n = Total collected	
and east-central districts of senegal in October-November 2013. If = Total collected	

Table 28 c: Human biting rate and parity rate of Anopheles gambiae s.l. and An.pharoensis in villages in the north and east-central districts of Senegal in October- November 2015	3
Table 29a: Anopheles gambiae s.l. indoor resting density (IRD) and human biting rate in villages of the Niayes area (September and November 2015)	
Table 30a : Susceptibility status of An. gambiae s.l. to pyrethroid, carbamate, organophosphate and organochlorine insecticides (n = 100 for all sites/insecticide))
Table 30b: Kdr west and east frequencies for An. arabiensis (125) and one An. melas (1) which survived susceptibility tests to DDT or pyrethroids in two villages of the the Niayes area	
Table 31: Susceptibility status of An. gambiae s.l. with CDC bottle tests 47 Table 32: Synergist bottle assay to determine the involvement of metabolic mechanisms in vector resistance to DDT and Permethrin 47	5

ACRONYMS

AIRS	Africa Indoor Residual Spraying Project
CDC	Center for Disease Control and Prevention
DDT	dichlorodiphenyltrichloroethane
FST	Faculty of Sciences and Technology
HBR	Human Biting Rate
HLC	Human Landing Catch
IRD	Indoor Resting Densities
IRS	Indoor Residual Spraying
kdr	knockdown rate
LEVP	Laboratory of Vector and Parasite Ecology
LLINs	Long-Lasting Insecticide Treated Nets
NMCP	National Malaria Control Program
PCR	Polymerase Chain Reaction
PHN	Per Human Night
PMI	Presidential Malaria Initiative
PR	Parity Rate
PSC	Pyrethrum Spray Catch
VC	Vector Control
VFS	Senegal River Valley
UCAD	University Cheikh Anta Diop
USAID	United States Agency for International Development
WG	Wettable granules
WHO	World Health Organization

EXECUTIVE SUMMARY

The residual efficacy of indoor residual spraying (IRS) with pirimiphos-methyl (Actellic CS 300) using a susceptible strain of Anopheles gambiae (Yaounde/"Boudin") was monitored for six months after spraying. IRS remained effective (providing >80% mortality in cone bioassay) for five months in the districts of Koungheul, Koumpentoum, and Malem Hodar, with similar levels of mortality on treated mud and cement walls. However, the residual duration of Actellic CS was shorter in Nioro District and lasted just two months. Also in Nioro District, houses in Ndramé Ndimb were sprayed with bendiocarb (Ficam WG 10%), but the residual efficacy was even shorter, with mortality >80% for only one month. There were no substantial variations in the efficacy of either insecticide according to the type of wall substrate (mud or cement). It is important to investigate the reasons for the particularly short residual duration of both bendiocarb and pirimiphos-methyl in Nioro and determine whether spray operators require re-training. Due to the decrease in efficacy six months after spraying the start of the IRS campaign could be moved to July, to cover the entire transmission period of July to November.

World Health Organization (WHO) susceptibility tests indicated that *An. gambiae* s.l. remain fully susceptible to pirimiphos-methyl, except in Koungheul where initial signs of resistance were recorded. This should be investigated further in 2016. Malaria vectors were also susceptible to bendiocarb in most places except in Ndoffane and Niayes where low-level resistance was recorded. Higher frequency bendiocarb resistance was observed in the suburbs of Dakar where pesticides are used for small scale agriculture (market gardening). Resistance to pyrethroids and dichlorodiphenyltrichloroethane (DDT) was widespread and appeared to be at similar frequencies for all types of pyrethroid.

Entomological surveillance was conducted within sprayed 'hot spots', which were selected to be sprayed based on malaria epidemiology data. Entomology monitoring was also conducted in unsprayed 'internal controls' from within the IRS districts. In addition several unsprayed districts that do not neighbor IRS districts were included in order to get a geographical representation of Northern, Central and Southern Senegal.. Entomology surveillance showed that in all monitored IRS districts the predominant vector species complex was *Anopheles gambiae* s.l., while in Nioro *An. funestus* s.l. were also frequently collected. In IRS districts the human biting rate (HBR) of *An. gambiae* s.l. was generally very low, at between 0.5 and 1.2 bites/person/night. This may be an indication that IRS was successful in reducing the malaria vector population size. However, the HBR in internal and external control villages (unsprayed) was also very low. In all unsprayed control villages (internal and external) the HBR was less than 2 bites per night. In unsprayed southern districts the predominant vector species complex present was also *An. gambiae* s.l. Of particular concern were the high indoor biting rates in the districts of Velingara, Kédougou, and Tambacounda, which reached peak rates of 36, 65, and 81 bites per person/night, respectively. In the same districts there was a similar amount of indoor and outdoor biting risk; however, the level of outdoor exposure will depend on local cultural night time practices.

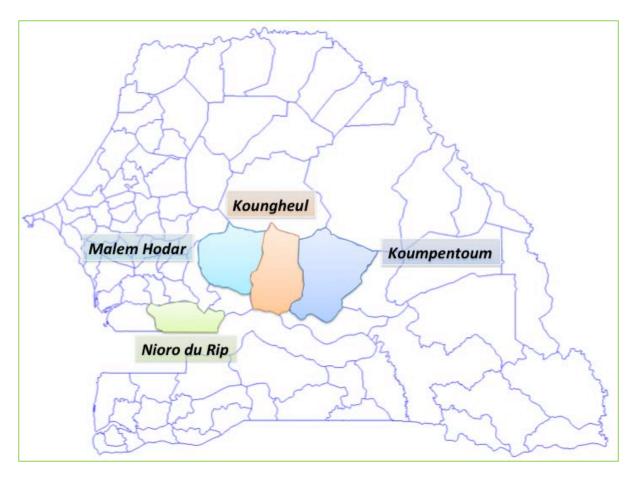
Indoor resting densities (IRD) were very low in treated villages with a mean of between 1.3-2.4 An. gambiae s.l. per house/night. The mean resting densities in internal control villages were greater at between 1.9-8.7 females/house/night. The biting rates and indoor resting catches were similar, indicating predominantly endophilic tendencies in this area. Southern districts (Tambacounda, Kedougou and Velingara) had the highest indoor biting rates but indoor resting densities were relatively low. For example, in Tambacounda the mean pyrethrum spray catch (PSC) was only 5.4 An. gambiae s.l. per house in October, despite an indoor HBR of 81 bites per person/night. This suggests that blood-fed An. gambiae s.l. exited before dawn in southern districts. In the districts of the Senegal River Valley (Central and North Senegal), the indoor HBR was less than 5 bites per night and there was a trend of endophily.

In Ranérou (unsprayed) the indoor HBR was 3.3 but mean PSC catch was 9.6 An. gambiae s.l. per house/night. This appears to indicate different resting behavioral characteristics by region.

The longevity of Anopheles gambiae s.l. females in terms of parity status was determined for sprayed villages as well as internal and external unsprayed controls. The proportion of parous An. gambiae s.l. appeared to be similar in sprayed and internal control areas (although numbers dissected in some districts were small). Parity rates were generally high (above 50%) and had classic dynamics with lower parous rates during periods of high population density and higher rates with aging populations toward the end of the rainy season.

The low biting rates and indoor resting densities in IRS sites appear to be indicative of a successful spray campaign. However, it should be noted that in many internal and external control sites (unsprayed) the biting rates were also very low and further investigation is needed to determine whether IRS is a cost-effective strategy in areas currently being sprayed. The very high indoor and outdoor biting rates of *An. gambiae* s.l. in non-IRS sites in southern districts of Velingara, Kédougou, and Tambacounda need to be investigated further to determine whether they constitute important areas of malaria transmission and whether additional control measures are needed. The exophilic behavior of *An. gambiae* s.l. in southern areas (as inferred from high indoor biting rates with low PSC resting densities) should also be studied further before any additional indoor interventions are considered.

Laboratory analysis for species identification, frequency of knockdown rate (kdr) and sporozoite rates is currently ongoing. We report species identification only for Kedougou, Dakar suburbs (Pikine & Guédiawaye), and Niayes in the current report, and sporozoite rates, *kdr*, and blood meal analysis for Niayes.


I. INTRODUCTION

As part of the President's Malaria Initiative (PMI), the U.S. Agency for International Development (USAID) provides technical and financial support to the National Malaria Control Program (NMCP) of Senegal and has introduced indoor residual spraying (IRS) of residual insecticide since June 2007 in selected districts. In Senegal, IRS implementation began as a pilot in three health districts (Vélingara, Nioro, and Richard-Toll) in 2007. Based on the results achieved, NMCP and PMI decided to expand IRS to three new districts (Guinguinéo, Malem Hodar, and Koumpentoum) in 2010. Given the relatively low incidence of malaria in the Senegal River Valley (VFS), particularly in the Delta, NMCP and PMI decided to stop IRS activity in these areas, deciding instead to implement IRS in a new district (Koungheul) in 2011. The NMCP has since adopted a targeted approach for IRS: a) districts with a yearly incidence of less than 30 per 1,000 will not receive IRS; b) districts with an incidence is greater than 50 per 1,000 (hot spots); and c) districts with an incidence greater than 50 per 1,000 will receive IRS over the whole district.

Year	Number of Districts Sprayed	Insecticide Used (# districts)	Number of Structures Sprayed	Coverage Rate	Population Protected
2012	6	Bendiocarb	306,916	98%	1,095,093
2013	4	Bendiocarb	206,704	98%	690,090
2014	4	Bendiocarb (2) Organophosphate (2)	204,159	97%	708,999
2015	4 (hot spots)	Bendiocarb (1) Organophosphate (3)	130,170	97.7%	514,833*
2016	4 (hot spots)	Organophosphate	90,000**	TBD	300,000**
2017	TBD (hotspots)	Organophosphate	75,000**	TBD	250,000**

*Preliminary data as of August 2015; **Represents projected targets

The Laboratory of Vector and Parasite Ecology (LEVP) of the Faculty of Science and Technology (FST) at the University Cheikh Anta Diop (UCAD) in Dakar was responsible for the entomological assessment of the effectiveness of IRS in the target districts as part of its collaboration with the NMCP. The main results of the rainy season ('winter' period July-November) of the 2015 campaign are presented in this report.

Figure 1. Geographical locations of the PMI-Senegal IRS districts sprayed for the 2015 campaign

Spray rounds and Survey dates for each IRS sentinels sites during the 2015 campaign

Districts	Sentinels Sites	Products	Spray rounds	1 st survey	2 nd survey	3 rd survey	4 th surve y	5 th survey
	Pakala	Actellic	08 June	02/08	25/08	14/09	15/10	19/11
Koungheul	Ida Mouride	Actellic	13 June	01/08	23/08	12/09	14/10	20/11
	Touba Koungheul*	Actellic	08 June	01/08	-	-	-	-
	Makka Bella	Actellic	23 May	30/07	22/08	18/09	05/10	26/11
Malem Hodar	Tip Saloum	Actellic	02 June	30/07	25/08	17/09	07/10	28/11
	Touba Gueyene*	Actellic	26 May	31/07	-	-	-	-
	Haltou Fass*	Actellic	07 June	03/08	-	-	-	-
Koumpentoum	Village 1	Actellic	29 May	04/08	22/08	13/09	16/10	27/11
	Koumare	Actellic	05 June	03/08	22/08	12/09	18/10	22/11
Nioro	Bamba Diakhatou	Actellic	01 June	31/07	28/08	28/09	30/10	19/11

Thiamene Walo**	Actellic	27 May	30/07	30/08	30/09	03/11	22/1
Ndrame Ndimb	FICAM	14 Sept	29/09	31/10	19/11	<i>01/11</i>	21/1

*Sites ruled out after one month of monitoring **Replaced by the village of **Paos Koto** after the 1st survey

2. METHODOLOGY

2.1 DISTRICTS AND SENTINEL VILLAGES FOR THE 2015 CAMPAIGN

Table I presents the sentinel villages, including unsprayed internal and external controls, selected for IRS districts that were followed during the 2015 IRS campaign. Fifteen (15) sentinel sites were selected based on stratification of villages by their malaria transmission level (i.e. 'hot spots'), geographical representation, and existence of a health post. Entomological monitoring of hot spots, unsprayed 'internal controls' from within the IRS districts and neighboring unsprayed 'external controls' were conducted. In addition several unsprayed districts that do not neighbor IRS districts were included in order to get a geographical representation of Northern, Central and Southern Senegal.

Thus, in each of the four IRS districts, three sentinel sites are selected: two from malaria hotspot villages (health posts that received IRS in 2015) and one from a non-hot spot (health post that did not receive IRS in 2015. There were three external control sites because the one for Kaffrine was the control for Malem Hodar and Koungheul.

Data were collected from July to November 2015 to monitor the sentinel sites after the spraying campaign, which took place from May the 23th to September the 14th 2015. Data were collected from both the IRS districts (including internal control sites) and non-IRS districts (including external sites) listed in Tables I and II, respectively. The geographical locations of the IRS districts are shown in the Figure I.

Years since spraying began	Health district	Sentinel villages	External controls
5	5 Koumpentoum Koumaré, Village I and Kouthiaba* Ko		Koussanar (Tambacounda)
5	Malem Hodar	Makka Bella, Tip Saloum and Diankhé Souf*	–Pété (Kaffrine)
4	Koungheul	Pakala, Ida Mouride and Keur Sérigne Diabel*	
I	Nioro	Bamba Diakhatou, Ndramé Ndimb and Paos Koto.	Keur Socé (Ndoffane)

TABLE 1: SENTINEL VILLAGES SELECTED IN THE IRS DISTRICTS, JUNE 2015-MARCH 2016

*Internal Controls

Health district	Sentinel villages	Entomological activities		
Northern and East Cent	ral Districts			
Niayes	Ngadiaga, Ndiambalo, Thiaye, Touba Taw Fekh & Beer	HLC indoors/outdoors, indoor PSC, parity rates, susceptibility tests.		
Richard-Toll	Mbagame, Polo, Ndiandiou, Maka Diama, Taba Darou Salam, Malé, Gnith, Ronkh, Khor & Reynabé I	Indoor PSC, susceptibility testing.		
Linguère	Barkédji & Ouarkhokh	HLC indoors/outdoors, indoor PSC, parity rates.		
Podor	Ndiayène Pendao & Niandane	HLC indoors/outdoors, indoor PSC, parity rates.		
Ranérou	Oudalaye & Fourdou	HLC indoors/outdoors, indoor PSC, parity rates.		
Matam	Sadel & Nabadji Ciwol	HLC indoors/outdoors, indoor PSC, parity rates.		
Kanel	Haouré & Dembankané	HLC indoors/outdoors, indoor PSC, parity rates.		
Bakel	Gabou & Moudéry	HLC indoors/outdoors, indoor PSC, parity rates.		
Fatick	Fatick	Suceptibility testing.		
Mbour	Mbour-Thies.	Suceptibility testing.		
Niakhar	Niakhar	Susceptibility testing.		
Bambey	Bambey-Diourbel	Suceptibility testing.		
Pikine et Guédiawaye	(Flooded areas in suburbs of Dakar)	Susceptibility testing.		
Southern Districts				
Vélingara	Madina Dianguet & Nemataba	HLC indoors/outdoors, indoor PSC, parit rates, susceptibility tests.		
Tambacounda	Wassadou, Badi-Gnongani Niériko & Koussanar	HLC indoors/outdoors, indoor PSC, parity rates.		
Kédougou	Tomboronkoto & Bandafassi	HLC indoors/outdoors, indoor PSC, pari rates, Susceptibility testing.		
Guinguinéo	Farabougou & Ngathie Naoudé	Susceptibility testing.		
Ndoffane	Keur Socé	HLC indoors/outdoors, indoor PSC, parity		
Kaffrine	Pété	HLC indoors/outdoors, indoor PSC, parity		

TABLE 2: SENTINEL VILLAGES SELECTED IN UNSPRAYED DISTRICTS

2.2 ACTIVITIES CARRIED OUT

Entomological monitoring activities focused on:

Monitoring the effectiveness of IRS treatment

Nioro, Koungheul, Koumpentoum, Malam Hodar

Frequency = monthly until mortality <80%, n = 360 An. gambiae s.s. per site.

Monitoring human biting rates (HLC indoors and outdoors)

IRS areas: Nioro, Koungheul, Koumpentoum, Malem Hodar

Frequency = 18 human nights sampled per month for 6 months per district.

• External control districts: Ndoffane, Kaffrine, Tambacounda

Frequency = 06 human nights sampled per month for 6 months per district.

 Unsprayed districts: Niayes, Linguere, Podor, Ranerou, Matam, Kenel, Bakel, Velingara, Tambacounda, Kedougou.

Frequency = 12 human nights sampled in August and October (2 months).

Mosquito resting densities (indoor PSC)

IRS areas: Nioro, Koungheul, Koumpentoum, Malam Hodar

Frequency = 30 rooms sampled per month for 6 months.

 Unsprayed districts: Niayes, Linguere, Podor, Ranerou, Matam, Kenel, Bakel, Velingara, Tambacounda, Kedougou.

Frequency = 20 rooms sampled for only 2 non-consecutive months (e.g. August, October).

Mosquito parity rates

- IRS areas: Nioro, Koungheul, Koumpentoum, Malam Hodar
- Unsprayed districts: Niayes, Linguere, Podor, Ranerou, Matam, Kenel, Bakel, Velingara, Tambacounda, Kedougou.

Frequency = Undefined proportion of An. gambiae s.l. from HLC.

Mosquito susceptibility to insecticides

- IRS areas: Nioro, Koungheul, Koumpentoum, Malam Hodar
- Unsprayed districts: Fatick, Bambey, Niakhar, Mbour, Pikine & Guediawaye, Guinguineo, Ndoffane.

2.3 EFFECTIVENESS OF INDOOR RESIDUAL SPRAYING

Treatment effectiveness in IRS districts was determined each time in 12 residential rooms chosen in two treated villages, with six rooms tested per village (five rooms treated and one untreated control room). In each village, tests were performed in five houses in one room per house. The choice of rooms in the villages was done by lottery and selected rooms were repeatedly tested each month during monitoring.

Cone bioassays were performed in each room according to WHO standard protocols. Female mosquitoes of a susceptible strain of *Anopheles coluzzii* maintained at the insectary (Research Institute for Development, Institut Pasteur of Dakar, and Parasite Vector Control Service) were used for this purpose. For the tests, three cones were placed on each wall and 10 mosquitoes were exposed in each

cone. The location of the cones on the walls changed slightly each month as it was noted that tape used for attaching cones removed part of the wall surface when removed. For the negative controls four cones were fixed to a piece of untreated white paper and then attached to an untreated wall. Mortality of test mosquitoes was recorded 24 hours after exposure, with Abbott's correction implemented if mortality was between 5 and 20% in the negative controls. The IRS treatment was considered effective if the mortality was greater than 80%, as described by WHO.

District	Sentinel site	IRS	Treatment date	l st	2 nd	3 rd	4 th	5 th	6th test
		product		test	test	test	test	test	
Koungheul	Pakala	Actellic	08 June	02/08	25/08	14/09	15/10	19/11	20/12
	Ida Mouride	Actellic	13 June	01/08	23/08	12/09	14/10	20/11	17/12
	Touba Koungheul*	Actellic	08 June	01/08					-
Malem Hodar	Makka Bella	Actellic	23 May	30/07	22/08	18/09	05/10	26/11	-
	Tip Saloum	Actellic	02 June	30/07	25/08	17/09	07/10	28/11	-
	Touba Guéyène*	Actellic	26 May	31/07					-
Koumpentoum	Haltou Fass*	Actellic	07 June	03/08					-
	Village I	Actellic	29 May	04/08	22/08	13/09	16/10	27/11	29/12
	Koumaré	Actellic	05 June	03/08	22/08	12/09	18/10	22/11	30/12
Nioro	Bamba Diakhatou	Actellic	01 June	31/07	28/08	28/09	30/10	19/11	30/12
	Ndramé Ndimb	FICAM	14 Sept	29/09	31/10	19/11	01/11	21/11	-
	Thiaméne Walo**	Actellic	27 May	30/07	30/08	30/09	03/11	22/11	-

TABLE 3: IRS TREATMENT DATES AND TIMING OF CONE BIOASSAY IN THE IRS SENTINELVILLAGES IN 2015

*Villages out of the study after one-month follow up.

**Replacement for Paos Koto

2.4 MONITORING VECTOR DYNAMICS

Sampling of vector populations was made by i) indoor collections in homes by pyrethrum spray catch (PSC) and ii) night time human landing catches (HLC) indoors and outdoors.

Collections of indoor resting mosquitoes by PSC were done early in the morning and were performed in all treated villages and controls in 10 rooms per village during one day each month. HLC was conducted overnight in selected villages in the districts treated and those untreated (except Richard-Toll). In every village HLC was carried out for two consecutive nights in three houses for a total of 6 human/nights outdoors and 6 human/nights indoors. The collected specimens were morphologically identified (genus/species) and counted in the field. A subsample of human biting females was dissected to determine the parity rate. Blood-meal samples were taken from females on Whatman filter papers for the determination of blood meal source. The captured females were individually stored in micro-tubes for laboratory analyses (sporozoite and kdr gene detection).

2.5 INSECTICIDES SPRAYED

In this indoor residual spraying campaign, in the districts concerned, the village health posts were sprayed where the previous year malaria incidence was greater than 15 cases per 1000 inhabitants. Pirimiphos-methyl (Actellic CS 300) was sprayed at $1g/m^2$ in the districts of Koungheul, Koumpentoum, Malem Hodar, and Nioro. The Thilagran health post (Nioro) was the only one sprayed with bendiocarb (Ficam WG 10%); processing and testing dates are shown in Table 3.

2.6 WHO SUSCEPTIBILITY TESTS

Insecticide susceptibility tests were carried out in four sprayed districts and in selected unsprayed districts. Adult females of 2-5 days old that were collected from the wild as larvae were used for testing.

Insecticides tested

The tests were carried out in WHO-test cylinders with papers impregnated with diagnostic concentrations of the following insecticides:

Pyrethroids:

- Deltamethrin 0.05%
- Lambda-cyhalothrin 0.05 %
- Permethrin 0.75%
- Cyfluthrin 0.15%
- Alpha-cypermethrin 0.1%

Organochlorines:

- DDT 4 %
- Dieldrin 4%

Organophosphates:

- Malathion 5 %
- Fenitrothion 1%
- Pirimiphos-Methyl 1%

Carbamates:

• Bendiocarb 0.1 %

Mosquitoes were exposed to treated papers for one hour and mortality was recorded after 24 hours post exposure.

For each insecticide, at least 100 mosquitoes were tested in four replicates of 25. An accompanying negative control was always tested. The basis of the interpretation of the results is presented in the table below based on WHO 2013 guidelines.

Susceptibility status	WHO threshold	Additional threshold	Observations
Susceptible	98-100%	98-100%	Susceptibility confirmed
Resistant	Less than 98%	90-98%	Resistance suspected
		Less than 90%	Resistance confirmed

2.7 CDC BOTTLE BIOASSAYS FOR RESISTANCE MONITORING

The insecticide susceptibility tests were carried out in the four IRS districts (Koungheul, Koumpentoum, Malem Hodar, and Nioro) and in six untreated districts: Kédougou, Guinguinéo, Richard Toll, Rufisque, and Dakar suburbs (Pikine and Guediawaye). Female *An. gambiae* s.l. from wild larvae that were 2- to 5-days-old were used for these tests.

The specimens were exposed to the diagnostic time of 30 minutes (45 minutes for DDT) and the tests were corrected with Abbott's formula control with mortality between 3 and 10%. The interpretation of the results is based on WHO criteria for susceptibly tests.

2.8 LAB MOLECULAR ANALYSES

From An. gambie s.l. collected by HLC, infective females detection was made by the method of Enzyme-Linked Immuno-Sorbent Assay circumsporozoite (CSP ELISA) described by Burkot et al., (1984) and slightly modified by Wirtz et al., (1987).

From An. gambie s.l. collected by PSC, the origin of blood meals was determined by the direct ELISA method described by Beier et al. (1986).

The molecular identification of An. gambiae sibling species was performed on a subsample of living and dead female from susceptibly tests. The molecular identification was performed by PCR according to the protocol of Wilkins et al. (2006).

3.1 RESIDUAL EFFECTIVENESS OF INSECTICIDE SPRAYING AGAINST A SUSCEPTIBLE STRAIN OF ANOPHELES GAMBIAE S.S. IN CONE BIOASSAY

The residual performance of IRS was determined by monthly cone bioassay with a laboratory strain of *An. gambiae* s.s. for sixth months after spraying. Treatment with pirimiphos-methyl (Actellic CS 300) remained effective for five months in the districts of Koungheul, Koumpentoum, and Malem Hodar but only two months in Nioro District. In the village of Ndramé Ndimb in Nioro District bendiocarb (Ficam WG 10%) was effective for less than one month (Table 4).

Distric	ts		Μοι	rtality: % (dea	ad/total tes	ted)	
		< I month June	2 month July	3 months August	4 months September	5 months October	6 months November
Koumpentoum [¥]	Control	-	1.9% (2/106)	6.25% (5/80)	1.2 % (1/83)	11.9 % (10/84)	2.5 % (2/81)
	Test	-	100% (284/284)	96.8%* (291/300)	87.2% (246/282)	85%* (204/235)	67.2 % (195/290)
Koungheul [¥]	Control	-	2.4% (3/123)	2.5% (2/80)	1.25% (1/80)	1.4 % (1/71)	0 % (0/80)
	Test	-	100% (353/353)	100% (300/300)	97.7% (293/300)	89.4% (262/293)	52 % (133/256)
Malem Hodar [¥]	Control	-	6.7% (9/135)	0% (0/81)	7.2% (6/83)	10% (4/40)	1% (1/80)
	Test	-	95.2%* (445/466)	99% (314/317)	17.7*% (70/296)	82.6*% (129/150)	17.9% (54/302)
Nioro [¥] (Actellic CS) [¥]	Control	-	0% (0/80)	2.2% (1/45)	5.5% (4/72)	2,5% (1/40)	3.3% (1/30)
	Test	-	100% (300/300)	42.6% (63/148)	72*% (181/246)	53.5% (84/157)	31.9% (29/91)
Nioro (FICAM) [£]	Control	2.3% (1/43)	2.5% (1/40)	0% (0/32)	-	-	-
	Test	95.2% (140/147)	31.4% (49/156)	14.4% (13/90)	-	-	-

TABLE 4: RESIDUAL PERFORMANCE OF IRS AGAINST A SUSCEPTIBLE STRAIN OF AN.GAMBIAE S.S. DURING THE RAINY SEASON OF JUNE-NOVEMBER 2015

*corrected mortality;

Nioro (Actellic)¥ : Bamba Diakhatou, and Thiamène Walo (the latter village was removed from the study 2 months after follow up). Nioro (FICAM)£ : Ndramé Ndimb (village treated in September).

There are different teams covering several districts. The same entomology team covered Nioro and Malem Hodar where strange decreases in mortality were recorded. It was subsequently found that some technicians in this team were wiping the wall surface clean before they attached cones.

3.1.1 KOUNGHEUL DISTRICT

In total 918 mosquitoes were exposed on mud walls and 584 mosquitoes on cement walls. Three months after treatment, mortality was 100% for both mud and cement walls. Pirimiphos-methyl mortality was >80% until five months after spraying for both types of substrate (Table 4).

3.1.2 KOUMPENTOUM DISTRICT

A total of 1391 mosquitoes were exposed. The treated walls remained effective five months after spraying with greater than 80% mortality produced in every room (Table 4).

3.1.3 MALEM HODAR DISTRICT

A total of 682 mosquitoes were exposed on mud walls and 849 on cement walls. Pirimiphos-methyl remained effective for five months with 96% mortality on cement walls and 73.7% on mud (Table 4).

3.1.4 NIORO DISTRICT

For pirimiphos-methyl (Actellic CS 300), 942 mosquitoes were exposed on the walls (648 on mud and 294 on cement). The product remained effective until two months after spraying with 100% mortality in the first two months followed by a sharp decrease in efficacy (Table 4). Bendiocarb (Ficam WG 10%) was tested for three months after spraying with 216 mosquitoes tested on mud and 177 on cement. In the second month bendiocarb was no longer effective with an average of 31% mortality (Table 4). It is important to investigate the reasons for the short residual duration in this area. Spray operators require more training to ensure homogenous spray coverage and entomologists may need a refresher course on cone bioassay standard operating procedures.

In all treated districts, there was no significant variation in the effectiveness of the insecticide according to the substrate type (mud or cement) (Tables 5-9).

Months	after IRS	M	ud (mon	ths afte	r sprayiı	ıg)	Cer	nent (n	nonths after	sprayin	g)	Tota	al (mont	hs afte	r sprayi	ng)
		2	3	4	5	6	2	3	4	5	6	2	3	4	5	6
Exposed	Test	188	180	210	171	169	165	120	90	122	87	353	300	300	293	256
	Control	82	40	40	30	41	41	40	40	41	39	123	80	80	71	80
KD 30'	Test	176	97	109	74	9	154	92	44	24	0	330	189	153	98	9
	Control	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mort 24 h	Test	188	180	208	161	93	165	120	85	101	40	353	300	293	262	133
	Control	2	0	0	I	0	I	2	I	0	0	3	2	I	I	0
Mortality	Test	100	100	99	94.2	55	100	100*	94.4	82.8	46	100	100	97.7	89.4	52
24 h (%)	Control	2.4	0	0	3.3	0	2.4	5	2.5	0	0	2.4	2.5	1.25	1.44	0

TABLE 5: EFFECTIVENESS OF PIRIMIPHOS-METHYL (ACTELLIC CS 300) AGAINST A SUSCEPTIBLE INSECTARY STRAIN OF AN.GAMBIAE S.S. ACCORDING TO SUBSTRATE TYPE IN THE DISTRICT OF KOUNGHEUL

* = corrected mortality

2nd month = July ; 3rd month = August ; 4th month = September ; 5th month = October ; 6th month = November

TABLE 6: EFFECTIVENESS OF PIRIMIPHOS-METHYL (ACTELLIC CS 300) AGAINST A SUSCEPTIBLE INSECTARY STRAIN OF AN.GAMBIAE S.S. ACCORDING TO SUBSTRATE TYPE IN THE DISTRICT OF KOUMPENTOUM

Months	after IRS	Μι	ıd (mon	ths afte	r sprayir	ıg)	Cei	ment (n	nonths af	ter sprayi	ng)	Tota	l (mont	hs afte	r sprayi	ng)
		2	3	4	5	6	2	3	4	5	6	2	3	4	5	6
Exposed	Test	222	180	161	150	169	62	120	121	85	121	284	300	282	235	290
	Control	106	80	83	84	81	-	-	-	-	-	106	80	83	84	81
KD 30'	Test	169	92	18	30	12	51	70	51	19	12	220	162	69	49	24
	Control	0	0	0	2	0	-	-	-	-	-	0	0	0	2	0
Mort 24 h	Test	22	175	141	125	121	62	116	105	79	74	284	291	246	204	195
	Control	2	5	I	10	2	-	-	-	-	-	2	5	I	10	2
Mortality	Test	100	97*	87.6	81.1*	71.6	100	96.4*	86.8	92*	61.2	100	96.8*	87.2	85*	67.2
24 h (%)	Control	1.9	6.25	1.2	11.9	2.5	1.9	6.25	1.2	11.9	2.5	1.9	6.25	1.2	11.9	2.5

* = corrected mortality

2nd month = July ; 3rd month = August ; 4th month = September ; 5th month = October ; 6th month = November

Months a	fter IRS	Mu	d (mont	ths afte	r sprayiı	ng)	Cem	ent (mo	nths aft	er spra	ying)	Tot	al (moi	nths afte	er sprayi	ng)
		2	3	4	5	6	2	3	4	5	6	2	3	4	5	6
Exposed	Test	226	124	122	90	120	240	193	174	60	182	466	317	296	150	302
	Control	45	41	43	-	41	90	40	43	40	40	135	81	83	40	81
KD 30'	Test	102	80	I	-	I	173	169	0	-	0	275	249	I	-	I
	Control	0	0	0	-	0	0	0	0	0	0	0	0	0	-	0
Mort 24 h	Test	207	121	30	70	14	238	193	40	59	40	445	314	70	129	54
	Control	3	0	3	-	I	6	0	3	4	0	9	0	6	4	I
Mortality (%)	Test	91*	97.6	19*	73.7*	11.7	99. 1*	100	16.7	96*	22	95.2*	99	17.7*	82.6*	17.9
	Control	6.7	0	6.9	-	2.4	6.7	0	7.5	10	0	6.7	0	7.2	10	1.2

TABLE 7: EFFECTIVENESS OF PIRIMIPHOS-METHYL (ACTELLIC CS 300) AGAINST A SUSCEPTIBLE INSECTARY STRAIN OF AN.GAMBIAE S.S. ACCORDING TO SUBSTRATE TYPE IN THE DISTRICT OF MALEM HODAR

* = corrected mortality

2nd month = July ; 3rd month = August ; 4th month = September ; 5th month = October ; 6th month = November

TABLE 8: EFFECTIVENESS OF PIRIMIPHOS-METHYL (ACTELLIC CS 300) AGAINST A SUSCEPTIBLE OF AN. GAMBIAE S.S.ACCORDING TO SUBSTRATE TYPE IN THE DISTRICT OF NIORO

Months at	ter IRS	Μι	ıd (mon	ths after	[.] sprayiı	ng)	Cer	nent (n	onths after	sprayin	g)	Total (months after spraying)				
		2	3	4	5	6	2	3	4	5	6	2	3	4	5	6
Exposed	Test	150	117	191	129	61	١50	31	55	28	30	300	148	246	157	91
	Control	-	-	-	-	-	80	45	72	40	30	80	45	72	40	30
KD 30'	Test	121	4	69	3	0	115	0	26	I	0	236	4	95	4	0
	Control	-	-	-	-	-	0	0	0	0	0	0	0	0	0	0
Mort 24 h	Test	150	50	143	65	21	150	13	38	19	8	300	63	181	84	29
	Control	-	-	-	-	-	0	I	4	I	I	0	I	4	I	I
Mortality 24 h	Test	100	42.7	73*	50.4	34.4	100	41.9	69 *	67.8	26.7	100	42.6	72*	53.5	31.9
(%)	Control	0	2.2	5.5	2.5	3.3	0	2.2	5.5	2.5	3.3	0	2.2	5.5	2.5	3.3

* = corrected mortality

Months a	after IRS		nonths a oraying)	after		t (months praying)	s after	Total (sp	months oraying)	after
	-	<	2	3	<	2	3	<	2	3
Exposed	Test	90	96	30	57	60	60	147	156	90
	Control	43	41	32	-	-	-	43	41	32
KD 30' Mort 24 h Mortality	Test	85	37	0	51	11	0	136	48	0
	Control	0	0	0	-	-	-	0	0	0
Mort 24 h	Test	86	30	7	54	19	6	140	49	13
	Control	I	Ι	0	-	-	-	I	I	0
Mortality	Test	95.5	31.2	23.3	94.7	31.7	10	95.2	31.4	14.4
24 h (%)	Control	2.3	2.4	0	2.3	2.4	0	2.3	2.4	C

TABLE 9: EFFECTIVENESS OF BENDIOCARB (FICAM WG 10%) AGAINST A SUSCEPTIBLE INSECTARY STRAIN OF AN. GAMBIAES.S. ACCORDING TO SUBSTRATE TYPE IN THE DISTRICT OF NIORO

* = corrected mortality

2nd month = July; 3rd month = August ; 4th month = September ; 5th month = October ; 6th month = November

3.2 VECTOR POPULATION DYNAMICS IN IRS DISTRICTS

3.2.1 KOUNGHEUL DISTRICT

Anopheles gambiae s.l. was the main species group caught in resting collections and human landing catches inside habitations of Koungheul District (Table 10). Vector populations increased during the rainy season. The minimum and maximum human biting rates were recorded in August and October, respectively. The greatest density caught resting indoors through PSC was in November.

Month	Species		HLC		PSC	Total
		Indoors	Outdoors	Total	-	
	An. gambiae s.l.	17	10	27	70	97
	An. funestus s.l.	0	0	0	0	0
August	An. pharoensis	0	2	2	0	2
	An. nili	0	0	0	0	0
	Other Anopheles	0	0	0	0	0
	An. gambiae s.l.	15	21	36	39	75
	An. funestus s.l.	0	0	0	I	I
September	An. pharoensis	0	I	I	0	I
	An. nili	0	0	0	0	0
	Other Anopheles	0	0	0	0	0
	An. gambiae s.l.	15	26	41	36	77
	An. funestus s.l.	0	0	0	0	0
October	An. pharoensis	I	0	I	0	I
	An. nili	0	0	0	0	0
	An. rufipes	0	0	0	2	2
	An. gambiae s.l.	20	12	32	151	183
	An. funestus s.l.	0	0	0	I	I
November	An. pharoensis	0	0	0	0	0
	An. nili	0	0	0	0	0
	An. rufipes	0	0	0	5	5
	An. gambiae s.l.	67	69	136	296	432
	An. funestus s.l.	0	0	0	2	2
Total	An. pharoensis	I	3	4	0	4
	An. nili	0	0	0	0	0
	An. rufipes	0	0	0	7	7

TABLE 10: SPECIES COMPOSITION ACCORDING TO THE SAMPLING METHOD DURING THE RAINY SEASON (KOUNGHEUL)

TABLE II A: HUMAN BITING RATE AND INDOOR RESTING DENSITY OF ANOPHELES GAMBIAE S.L. FEMALES IN KOUNGHEUL DISTRICT (COMBINED RESULTS FOR SPRAYED AND UNSPRAYED VILLAGES)

							Huma	an biting	g rate							
			Indoors				(Dutdoor	s		Total					
	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total	
Man nights	18	18	18	18	72	18	18	18	18	72	36	36	36	36	144	
Total An. gambiae s.l.	17	15	15	20	67	10	21	26	12	69	27	36	41	32	136	
Bites /man/ night	0.9	0.8	0.8	1.1	0.9	0.5	1.2	1.4	0.7	1.0	0.75	I	1.1	0.9	0.9	

			PSC		
	Aug	Sept	Oct	Nov	Total
Number of rooms	30	30	30	30	120
Total An. gambiae s.l.	70	39	36	151	296
Indoor Resting Density (females/room)	2.3	1.3	1.2	5	2.5

TABLE IIB: HUMAN BITING RATE (HBR) FOR ANOPHELES GAMBIAE S.L. IN SPRAYED AND UNSPRAYED VILLAGES (KOUNGHEUL)

		Sp	rayed villa	ges		Int	ernal con	trol		
-	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total
Man/night	24	24	24	24	96	12	12	12	12	48
Total An. gambiae s.l.	24	29	24	22	99	3	7	17	10	37
Human biting rate (bites/man/night)	I	1.2	I	0.9	I	0.25	0.6	1.4	0.8	0.8

TABLE IIC: INDOOR RESTING DENSITY FOR ANOPHELES GAMBIAE S.L. FEMALES IN SPRAYED AND UNSPRAYED VILLAGES (KONGHEUL)

		Sprayed villages						ternal cont	rol					
	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total				
Number of Rooms	20	20	20	20	80	10	10	10	10	40				

Total An. gambiae s.l.	17	7	12	67	103	53	32	24	84	193
Density (females/room)	0.85	0.35	0.6	3.35	1.3	5.3	3.2	2.4	8.4	4.8

Population density

The analysis was made only for Anopheles gambiae s.l. Biting rates were very low with an average of I bite per man per night inside and outside houses (Table 11a) in treated villages as in the control village (table 11b). The indoor resting density ranged from 1.3 females/room (September) to 5 females/room (November). In the internal control village the average was 4.8 compared to 1.3 females per room in the sprayed villages respectively (table 11c). These results indicate that vectors were largely endophilic in the internal control during the monitoring period but less in the sprayed villages from August to October.

Parity rate

The parity rate was determined for females captured during HLC. In total between August and November the mean parity rate was 63.3% in treated villages and 66.6% in the internal control village (Table 12), indicating no difference in age structure.

		Sprayed vill	ages		Internal co	ntrol
Monitoring month	Total caught	Dissected	Parity rate	Total caught	Dissected	Parity rate
August	24	19	52.6% (10/19)	3	2	50% (1/2)
September	29	21	66.7% (14/21)	7	4	25% (1/4)
October	24	12	50% (6/6)	17	10	70% (7/10)
November	22	8	100% (8/8)	10	5	100% (5/5)
Total	99	60	63.3% (38/60)	37	21	66.6% (14/21)

TABLE 12: PARITY RATE OF ANOPHELES GAMBIAE S.L. IN SPRAYED AND UNSPRAYED VILLAGES IN **KOUNGHEUL DISTRICT**

3.2.2 KOUMPENTOUM DISTRICT

Species Composition

Anopheles gambiae s.l. was the main species caught in human landing catches and indoor resting collections in the district of Koumpentoum (Table 13). The density of An. gambiae s.l. increased during the rainy season and reached the peak in September before declining. Average resting density across months was 2.4 in the sprayed villages and 3.3 in the unsprayed village.

Population density

The biting rate of *An. gambiae* s.l. in the district of Koumpentoum was highest in September and lowest in November both inside and outside houses, averaging 2.3 and 0.2, respectively, per human night (Table 14a). The mean biting rate recorded in treated villages was low (1.2 bites per human/night) but this was about two times higher than the unsprayed control villages (both internal and external) that had 0.6 bites per human/night (Table 14a). Similarly, *An. gambiae* s.l. resting densities were generally low, but the highest densities were in September with an average of 4 females per room/night (Table 14c). There was a trend of greater indoor densities in the internal control village (an average of 3.3 females per room) with a peak in August of 5.5 females per room compared to treated villages. In the external control village densities were lower, with I female captured per room (Table 14c).

Month	Encies		HLC		PSC	Tota
Month	Species	Indoor	Outdoor	Total	FSC	Iota
August	An. gambiae s.l.	18	12	30	110	140
	An. funestus s.l.	0	0	0	I	I
	Other Anopheles	0	0	0	0	0
September	An. gambiae s.l.	37	46	83	118	201
	An. funestus s.l.	0	0	0	0	0
	Other Anopheles	0	0	0	0	0
October	An. gambiae s.l.	21	6	27	58	85
	An. funestus s.l.	0	0	0	0	0
	An. rufipes	0	0	0	I	I
November	An. gambiae s.l.	3	3	6	37	43
	An. funestus s.l.	0	0	0	0	0
	An. rufipes	0	0	0	I	I
Total	An. gambiae s.l.	79	67	146	323	469
	An. funestus s.l.	0	0	0	I	I
	An. rufipes	0	0	0	2	2

TABLE 13: SPECIES COMPOSITION ACCORDING TO THE SAMPLING METHOD DURING THE RAINY SEASON IN KOUMPENTOUM DISTRICT

TABLE 14A: HUMAN BITING RATE AND INDOOR RESTING DENSITY OF ANOPHELES GAMBIAE S.L. FEMALES DURING THE RAINY SEASON IN KOUMPENTOUM DISTRICT (COMBINED FOR SPRAYED AND UNSPRAYED VILLAGES)

		Human biting rate													
		Indoors						Outdoor	s			Total			
	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total
Man nights	18	18	18	18	72	18	18	18	18	72	36	36	36	36	144
Total An. gambiae s.l.	18	37	21	3	79	12	46	6	3	67	30	83	27	6	146
Bites / man / night	I	2	1.17	0.2	1.1	0.7	2.6	0.33	0.2	0.9	0.8	2.3	0.75	0.2	I

	PSC								
	Aug	Sept	Oct	Nov	Total				
Number of rooms	30	30	30	30	120				
Total An. gambiae s.l.	110	118	58	37	323				
Density per room	3.7	3.9	1.9	1.2	2.7				

TABLE 14B: HUMAN BITING RATE (HBR) FOR ANOPHELES GAMBIAE S.L. IN SPRAYED AND UNSPRAYED VILLAGES IN KOUMPENTOUM

	Sprayed villages						Inte	rnal co	ntrol		External control				
	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total
Man - night	24	24	24	24	96	12	12	12	12	48	12	-	12	-	24
Total An. gambiae s.l.	27	60	25	3	115	3	23	2	3	31	9	-	6	-	15
Biting rate (b/m/n)	1.1	2.5	I	0.1	1.2	0.3	1.9	0.2	0.3	0.6	0.8	-	0.5	-	0.6

TABLE 14C: INDOOR RESTING DENSITY FOR ANOPHELES GAMBIAE FEMALES IN SPRAYED AND UNSPRAYED VILLAGES IN KOUMPENTOUM

	Sprayed villages					Inte	ernal co	ntrol			External control				
	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total
Number of rooms	20	20	20	20	80	10	10	10	10	40	10	-	10	-	20
Total An. gambiae s.l.	55	77	42	18	192	55	41	16	19	131	12	-	6	-	18
Density (females/room)	2.8	3.9	2.1	0.9	2.4	5.5	4.1	1.6	1.9	3.3	1.2	-	0.6	-	0.9

Parity rate

The number of dissected biting females was very low in the control villages. The overall number dissected was too few for accurate comparison of the parity rate for *An. gambiae* s.l. (Table 15).

Months of	Sprayed villages				Internal co	ontrol		External c	ontrol
surveillance	Total	Dissected	Parity	Total	Dissected	Parity	Total	Dissected	Parity
August	27	21	42.8% (9/21)	3	3	33,3% (1/3)	9	6	66.7% (4/9)
September	60	30	36.7% (11/30)	23	5	60% (3/5)	-	-	-
October	25	8	62.5% (5/8)	2	I	0%	6	3	66.7 (2/3)
November	3	0	0%	3	2	100% (2/2)	-	-	-
Total	115	59	42% (25/59)	31	11	55% (6/11)	15	9	67% (6/9)

TABLE 15: PARITY RATE OF HUMAN BITING FEMALE ANOPHELES GAMBIAE S.L. COLLECTED BY HLC	IN
TREATED AND CONTROL VILLAGES IN THE DISTRICT OF KOUMPENTOUM	

3.2.3 MALEM HODAR DISTRICT

Species composition

Anopheles gambiae s.l. was the main species caught in human landing catches and indoor resting catches in Hodar Malem District (Table 16).

Population density

The population density of host-seeking *An. gambiae* s.l. was relatively low in the district of Malem Hodar with an average biting rate of less than one mosquito per person/night both inside and outside houses as measured by HLC (Table 16a). The mean biting rate was very low in treated villages (0.5 bites per human/night), but was double (1.3 bites per human/night) in the control villages (Table 16b). The mosquito density was also lower in treated villages and relatively higher in the control villages. A clear trend of increased densities indoors was observed towards the end of the rainy season in the sprayed villages. The indoor resting densities were greatest in the external control villages (8 females/room/night) and internal controls (4.7 females/room/night) compared with treated villages (2.2 females/room/night) (Table 16c).

Parity rate

The results showed that parity rates were higher in control districts compared to the treated villages with a mean parity rate of 63% in the external control and 60% in the internal control versus 43% in sprayed villages (Table 17).

Month	S pecies		HLC		PSC	Total
		Indoors	Outdoors	Total		
	An. gambiae s.l.	11	8	19	87	106
August	An. funestus s.l.	0	0	0	0	0
	An. pharoensis	I	0	Ι	0	I
	An. gambiae s.l.	19	13	32	50	82
September	An. funestus s.l.	0	0	0	0	0
	An. pharoensis	I	0	Ι	0	I
	An. gambiae s.l.	12	15	27	123	150
October	An. funestus s.l.	0	0	0	0	0
	An. pharoensis	0	0	0	0	0
	An. gambiae s.l.	20	9	29	103	132
November	An. funestus s.l.	0	0	0	I	I
	An. pharoensis	0	0	0	0	0
	An. gambiae s.l.	62	45	107	363	470
Total	An. funestus s.l.	0	0	0	I	I
	An. pharoensis	2	0	2	0	2

TABLE 16: SPECIES COMPOSITION OF THE MOSQUITO ACCORDING TO THE SAMPLING METHOD IN THE DISTRICT OF MALEM HODAR

TABLE 16 A: HUMAN BITING RATE AND INDOOR RESTING DENSITITIES FOR ANOPHELES GAMBIAE S.L. IN MALEM HODAR DISTRICT (COMBINED FOR SPRAYED AND UNSPRAYED VILLAGES)

							Huma	ın biting	g rates						
			Indoors				(Outdoor	s				Total		
	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total
Man nights	18	18	18	18	72	18	18	18	18	72	36	36	36	36	144
Total An. gambiae s.l.	11	19	12	20	62	8	13	15	9	45	19	32	27	29	107
Biting rate (b/m/n)	0.6	1.1	0.7	1.1	0.9	0.4	0.7	0.8	0.5	0.6	0.5	0.9	0.8	0.8	0.7

			PSC		
	Aug	Sept	Oct	Nov	Total
Total rooms	30	30	30	30	120
Total An. gambiae s.l.	87	50	123	103	363
Density per room	2.9	1.7	4.1	3.4	3.0

TABLE 16 B: HUMAN BITING RATE OF ANOPHELES GAMBIAE S.L. IN TREATED AND CONTROL VILLAGES IN MALEM HODAR DISTRICT

		Spra	ayed vil	lages			Inte	rnal co	ntrol			Exte	rnal co	ntrol	
	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total
Man nights	24	24	24	24	96	12	12	12	12	48	12	-	12	-	24
Total An. gambiae s.l.	8	13	11	13	45	11	19	16	16	62	18	-	13	-	31
Biting rate (b/m/n)	0.3	0.5	0.5	0.5	0.5	0.9	1.6	1.3	1.3	1.3	1.5	-	I	-	1.3

TABLE 16 C: INDOOR RESTING DENSITY FOR ANOPHELES GAMBIAE FEMALES IN SPRAYED AND UNSPRAYED VILLAGES IN MALEM HODAR

		Spra	ayed vill	ages			Inte	rnal co	ntrol			Exte	ernal co	ntrol	
	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total
Number of rooms	20	20	20	20	80	10	10	10	10	40	10	-	10	-	20
Total An. gambiae s.l.	27	32	69	48	176	60	18	54	55	187	76	-	84	-	160
Indoor Resting rate (number of females/room)	1.4	1.6	3.5	2.4	2.2	6	1.8	5.4	5.5	4.7	7.6	-	8.4	-	8

TABLE 17: PARITY RATE OF FEMALE ANOPHELES GAMBIAE S.L. COLLECTED BY HLC IN TREATED AND CONTROL VILLAGES IN THE DISTRICT OF MALEM HODAR

Month		Sprayed villa	ıge		Internal con	trol		External con	ntrol
Month	Total	Dissected	Parity	Total	Dissected	Parity	Total	Dissected	Parity
August	8	2	0%	11	4	50% (2/4)	18	9	55,5% (5/9)
September	13	11	27% (3/11)	19	16	75% (12/16)	-	-	-
October	11	4	75% (3/4)	16	9	55% (5/9)	13	7	71,4% (5/7)
November	13	11	54% (6/11)	16	14	50% (7/14)	-	-	-
Total	45	28	43% (12/28)	62	43	60% (26/43)	31	16	63% (10/16)

3.2.4 NIORO DISTRICT

Species composition

Anopheles gambiae s.l. and Anopheles funestus s.l. were the main species caught by HLC and indoor resting collections in Nioro District with respectively 728 and 342 specimens collected (Table 18). Populations of both *An. gambiae* s.l. and *An. funestus* s.l. reached peak indoor resting densities in August.

TABLE 18: SPECIES COMPOSITION OF THE MOSQUITO ACCORDING TO THE SAMPLING METHOD IN
THE DISTRICT OF NIORO

Month	Species		HLC		PSC	Total
		Indoors	Outdoors	Total		
August	An. gambiae s.l.	18	6	24	276	300
	An. funestus s.l.	19	24	43	87	130
	Other Anopheles	0	0	0	0	0
September	An. gambiae s.l.	33	23	56	33	89
	An. funestus s.l.	9	9	18	8	26
	An. pharoensis	0	I	I	0	I
	An. squamosus	2	I	3	0	3
October	An. gambiae s.l.	24	17	41	112	153
	An. funestus s.l.	4	20	24	21	45
	An. pharoensis	0	0	0	0	0
	An rufipes	3	5	8	0	8
November	An. gambiae s.l.	26	24	50	136	186
	An. funestus s.l.	25	51	76	65	4
	Other Anopheles	0	0	0	0	0
Total	An. gambiae s.l.	101	70	171	557	728
	An. funestus s.l.	57	104	161	181	342
	An. pharoensis	0	I	l	0	I
	Other Anopheles	5	6	11	0	11

Population densities

The results recorded in Nioro District show that biting densities of *An. gambiae* s.l. were low inside and outside houses (Table 19a). The HBR in the internal control village (1.7 bites per human/night) was low but about two times higher than that recorded in treated villages (Table 19 b). The HBR in the external control was lowest at only 0.08 bites per human/night.

The density resting indoors was much greater in the internal control village at 8.7 females per room/night than in treated villages at 1.7 females per room per night and the external control at 0.3 females per room/night. In this district a significant population of *An. funestus* s.l. was documented in the villages of Bamba Diakhatou and Ndramé Ndimb (Table 19 d).

TABLE 19 A: HUMAN BITING RATE AND INDOOR RESTING DENSITITIES OF ANOPHELES GAMBIAE S.L. IN NIORO DISTRICT (COMBINED FOR SPRAYED AND UNSPRAYED VILLAGES)

							Huma	n biting	rates						
			Indoors	5				Outdoo	rs				Tota		
	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total
Man nights	18	18	18	18	72	18	18	18	18	72	36	36	36	36	144
Total An. gambiae s.l.	18	33	24	26	101	6	23	17	24	70	24	56	41	50	171
Biting rate (bites /person/night)	I	1.8	1.3	1.4	1.4	0.3	1.3	0.9	1.3	I	0.7	1.6	1.1	1.4	1.2

NB: One village (Ndramé Ndimb) was sprayed with FICAM in September.

			PSC		
	Aug	Sept	Oct	Nov	Total
Number of rooms	30	30	30	30	120
Total An. gambiae s.l.	276	33	112	136	557
Density per room	9.2	1.1	3.7	4.5	4.6

TABLE 19 B: HUMAN BITING RATE OF ANOPHELES GAMBIAE S.L. IN TREATED VILLAGES AND CONTROLS IN NIORO DISTRICT

		Spr	ayed vi	lages			Inte	rnal cor	ntrol			Exte	ernal co	ntrol	
	Aug	Sept.	Oct.	Nov.	Total	Aug	Sept.	Oct.	Nov.	Total	Aug	Sept.	Oct.	Nov.	Total
Man nights	12	24	24	24	84	24	12	12	12	60	12	-	12	-	24
Total An. gambiae s.l.	I	37	10	23	71	23	19	31	27	100	2	-	0	-	2
Biting rate (bites/man/night)	0.1	1.5	0.4	I	0.8	I	1.6	2.6	2.3	1.7	0.2	-	0	-	0.08

TABLE 19 C: INDOOR RESTING DENSITY OF ANOPHELES GAMBIAE S.L. FEMALES IN SPRAYED AND UNSPRAYED VILLAGES IN NIORO DISTRICT

		Spra	ayed vill	ages			Int	ernal co	ontrol			Exte	rnal cor	ntrol	
	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total	Aug	Sept	Oct	Nov	Total
Nb. rooms	10	20	20	20	70	20	10	10	10	50	10	-	10	-	20
Total An. gambiae s.l.	22	21	18	60	121	254	12	94	76	436	3	-	2	-	5
Resting rate	2.2	1.1	0.9	3	1.7	12.7	1.2	9.4	7.6	8.7	0.3	-	0.2	-	0.3

Month		HLC		PSC
	Indoors	Outdoors	Total	
August	l9	24	43	87
	(1.05 b/m/n)	I.3 b/m/n)	(1.2 b/m/n)	(2.9 f/r)
September	9	9	18	8
	(0.5 b/m/n)	(0.5 b/m/n)	(0.5 b/m/n)	(0.3 f/r)
October	4	20	24	21
	(0.2 b/m/n)	(1.1 b/m/n)	(0.6 b/m/n)	(0.7 f/r)
November	25	51	76	65
	(1.4 b/m/n)	(2.8 b/m/n)	(2 b/m/n)	(2.2 f/r)

TABLE 19 D: HUMAN BITING RATE OF ANOPHELES FUNESTUS S.L. IN NIORO DISTRICT

BMN = Bites/man/night, f/r = females per room

Parity rate

Parity rates in Nioro District were comparable between the internal control village and sprayed villages with 52% and 50%, respectively. Only two specimens were caught in the external control village during monitoring (Table 20).

Month		Sprayed villages			Internal co	ntrol	External control			
	Total	Dissected	Parity	Total	Dissected	Parity	Total	Dissected	Parity	
August	I	I	0%	23	12	25% (3/12)	2	0		
September	37	18	56% (10/18)	19	13	54% (7/13)	-	-	-	
October	10	4	25% (1/4)	31	23	57% (13/23)	0	0		
November	23	15	53% (8/15)	27	15	67% (10/15)	-	-	-	
Total	71	38	50% (19/38)	100	63	52% (33/63)	2	0		

TABLE 20: PARITY RATE OF FEMALE ANOPHELES GAMBIAE S.L. BETWEEN TREATED AND CONTROL VILLAGES IN NIORO DISTRICT

3.3 UNSPRAYED DISTRICTS

3.3.1 VELINGARA DISTRICT

Species composition

Anopheles gambiae s.l. was the main species caught in HLC and resting collections in Velingara District (Table 21).

Population density

The densities of human biting of An. gambiae s.l. were very high at the start of the rainy season, averaging 42.8 bites per human/night in August (indoors and outdoors) compared with 5.7 in October. Despite the high biting rates in August indoors and outdoors, an average of only 3 females per room were collected by PSC in August (Table 22 a).

Month	Species		HLC		PSC	Total
		Indoors	Outdoors	Total		
August	An. gambiae s.l.	437	590	1027	60	I 087
	An. funestus s.l.	0	0	0	0	0
	An. pharoensis	0	I	I	0	I
	An. nili	2	0	2	0	2
	Other Anopheles	0	0	0	0	0
October	An. gambiae s.l.	58	86	144	28	172
	An. funestus s.l.	0	I	I	8	9
	An. pharoensis	0	0	0	I	I
	An. nili	0	0	0	0	0
	Other Anopheles	0	0	0	0	0
Total	An. gambiae s.l.	495	676	1171	88	I 259
	An. funestus s.l.	0	I	I	8	9
	An. pharoensis	0	I	I	I	2
	An. nili	2	0	2	0	2
	Other Anopheles	0	0	0	0	0

TABLE 21: SPECIES COMPOSITION ACCORDING TO THE SAMPLING METHOD IN THE DISTRICT OF VÉLINGARA

TABLE 22 A: HUMAN BITING RATE AND INDOOR RESTING DENSITITIES FOR ANOPHELES GAMBIAE S.L.IN VÉLINGARA DISTRICT (AUG-OCTOBER 2015)

					HLC					
		Indoors			Outdoors			Total		
	Aug	Oct	Total	Aug	Oct	Total	Aug	Oct	Total	
Nemataba	163	27	190	240	60	300	403	87	490	
Madina Dianguet	274	28	302	350	23	373	624	51	675	
Total An. gambiae s.l.	437	55	492	590	83	673	1027	138	1165	
Human biting rate bites/man/night	36.4	4.6	20.5	49.2	6.9	28.0	42.8	5.7	24.3	

		PSC					
	Aug	Oct	Total				
Nemataba	21	7	28				
Madina Dianguet	39	21	60				
Total An. gambiae s.l.	60	28	88				
Density per room	3	1.4	2.2				

Parity rate

Parity rates were relatively higher at the end of the rainy season (October) in Madina Dianguet and comparable between endophagic females and exophagic females in Nemataba. Changes in parity rate between August and October in Nemataba were minimal. (Table 22 B).

TABLE 22 B: PARITY RATE FOR ANOPHELES GAMBIAE S.L. IN VÉLINGARA DISTRICT (AUG-
OCTOBER 2015)

Month		Indoor						Outdoor				
	August			October			August			October		
Villages	D	Р	PR%	D	Р	PR%	D	Р	PR%	D	Р	PR%
Nemataba	140	107	76.4	26	20	76.9	150	92	61.3	50	35	70
Madina Dianguet	153	67	43.8	28	28	100	145	68	46.9	19	18	94.7
Total	293	174	59.4	54	48	88.9	295	160	54.2	69	53	76.8

D = number dissected, P = parous, PR = %parity rate

3.3.2 KEDOUGOU DISTRICT

Species composition

An. gambiae s.l. was the main human biting species present (Table 23). Other species of Anopheles such as An. nili, An. ziemanni, and An. pharoensis were collected in very small numbers. Of 151 An. gambiae s.l. identified by PCR to species 6% were An. coluzzii, 13% An. arabiensis, and 81% An. gambiae s.s.

TABLE 23: SPECIES COMPOSITION OF THE MOSQUITO ACCORDING TO THE SAMPLING METHOD INTHE DISTRICT OF KÉDOUGOU

Month	S pecies		HLC		PSC	Total	
		Indoors	Outdoors	Total			
July	An. gambiae s.l.	785	773	1558	45	1603	
	An. rufipes	0	0	0	I	I	
October	An. gambiae s.l.	325	303	628	35	663	
	An. pharoensis	2	I	3	0	3	
	An. nili	3	I	4	0	4	
	An. ziemanni	0	3	3	0	3	
	An. rufipes	0	0	0	I	I	
Total	An. gambiae s.l.	1,110	I,076	2,186	80	2,266	
	An. pharoensis	2	I	3	0	3	
	An. nili	3	I	4	0	4	
	An. rufipes	0	0	0	2	2	

Population densities

In Kedougou District human biting rates were very high in July at 64.9 bites per human/night (mean indoors and outdoors). In October the biting rate was still high at 26.2 bites per human/night (Table 24a). The mean human biting rate was at least twice as large in Tomboronkoto as in Bandafassi Village. The low indoor resting density of just 2 females per room/night compared to the high indoor biting rates may indicate a trend of exophily (Table 24a).

TABLE 24 A: HUMAN BITING RATE AND INDOOR RESTING DENSITITIES FOR ANOPHELESGAMBIAE S.L. IN KEDOUGOU DISTRICT

					HLC				
	Indoors			Outdoors			Total		
	July	Oct.	Total	July	Oct.	Total	July	Oct.	Total
Tomboronkoto	532	234	766	457	263	720	989	497	1486
Bandafassi	253	91	344	316	40	356	569	131	700
Man nights	12	12	24	12	12	24	24	24	48
Total An. gambiae s.l.	785	325	1110	773	303	1076	1558	628	2 186
Human biting rate (b/m/n)	65.4	27.I	46.2	64.4	25.2	44.8	64.9	26.2	45.5

	PSC						
	July	Oct.	Total				
Tomboronkoto	20	22	42				
Bandafassi	25	13	38				
Number of rooms	20	20	40				
Total An. gambiae s.l.	45	35	80				
Density per room	2.3	1.7	2				

Parity rate

The parity rate of An. gambiae s.l. was much higher in October than in July in both villages and for indoor and outdoor collections (Table 24b).

TABLE 24 B: PARITY RATE OF FEMALE ANOPHELES GAMBIAE S.L. IN UNSPRAYED VILLAGES IN THE
DISTRICT OF KÉDOUGOU

	Indoors				Outdoors				Total			
	July		October		July		October		July		October	
	D	P(PR)	D	P(PR)	D	P(PR)	D	P(PR)	D	P(PR)	D	P(PR)
Tomboronkoto	203	89 (43.8)	154	107 (69.5)	132	48 (36.4)	114	86 (75.4)	335	1 37 (40.9)	268	193 (72)
Bandafassi	72	39 (54.2)	89	74 (83.1)	173	76 (43.9)	28	21 (75)	245	115 (46.9)	117	95 (81.2)
Total	275	128 (46.5)	243	181 (74.5)	305	124 (40.6)	142	107 (75.3)	580	252 (43.4)	385	288 (74.8)

D = number dissected, P = parous, PR = %parity rate

3.3.3 TAMBACOUNDA DISTRICT

VECTOR SURVEILLANCE WAS CARRIED OUT ONLY IN OCTOBER. ANOPHELES GAMBIAE S.L. WAS THE MAIN SPECIES CAUGHT IN HLC AND INDOOR PSC IN THE DISTRICT OF

Month	Species		PSC	Total			
		Indoors	Outdoors	Total			
October	An. gambiae s.l.	980	624	1604	108	1712	
	An. funestus s.l.	I	I	2	I	3	
	An. pharoensis	9	31	40	I	41	
	An. nili	2	3	5	0	5	
	An. ziemanni	3	12	15	0	15	
	An. squamosus	0	0	0	I	I	
	An. rufipes	0	0	0	I	I	

TAMBACOUNDA (TABLE 25).TABLE 25: SPECIES COMPOSITION OF THE MOSQUITO ACCORDINGTO THE SAMPLING METHOD IN THE DISTRICT OF **TAMBACOUNDA**

Human biting rate and parity rate

In October the biting rate of Anopheles gambiae s.l. was very high, with an average of 66.8 bites per human/night (indoor and outdoor) with similar biting rates in both villages. There was a greater indoor HBR, indicating endophagy in Wassadou which was not observed in Badi G. Nieriko. The indoor resting densities of An. gambiae s.l. were relatively low with an average of 5.4 females per room. This suggests exophilic behavior, with the majority having exited by morning. In both villages, the average parity rate of human biting An. gambiae s.l. was 78.2%.

Villages	Indicators		HBR		PSC
		Indoors	Outdoors	Total	
Wassadou	Total An. gambiae s.l.	597	210	807	72
	HBR	99.5 BMN	35 BMN	67.2 BMN	7.2 F/R
	PR (P/D)	134/181 (74%)	119/144 (82.6%)	253/325 (77.8%)	-
Badi G. Nieriko	Total An. gambiae s.l.	383	414	797	36
NCINO	HBR	63.8 BMN	69 BMN	66.4 BMN	3.6 F/R
	PR (P/D)	155/187 (82.9%)	81/113 (71.7%)	236/300 (78.7%)	-
Total	Total An. gambiae s.l.	980	624	I 604	108
	HBR	81.7 BMN	52 BMN	66.8 BMN	5.4 F/R
	PR (P/D)	78.5 (289/368)	77.8 (200/257)	78.2 (489/625)	-

TABLE 26: HUMAN BITING RATES, PSC RESTING CATCH AND PARITY RATE OF AN.GAMBIAE S.L. IN TAMBACOUNDA DISTRICT

HBR = human biting rate, D = number dissected, P = parous, PR = %parity rate, PRN = per room/night, BMN = Bites/man/night

3.3.4 DISTRICTS IN NORTH AND EAST-CENTRAL SENEGAL

For districts of the Middle Senegal River Valley and Ferlo, vector surveillance was done in the second half of October and early November. *An. gambiae* s.l. was the main species present in both HLC and indoor resting catches (Table 27).

Districts	S pecies		HLC		PSC	Tota
		Indoors	Outdoors	Total		
	An. gambiae s.l.	6	4	10	59	69
Bakel	An. ziemanni	I	0	I	0	I
	An rufipes	0	0	0	35	35
Matam	An. gambiae s.l.	I	0	I	88	89
Matam	An rufipes	2	I	3	214	217
	An. gambiae s.l.	9	2	11	81	92
Kanel	An. pharoensis	0	0	I	0	I
	An rufipes	5	I	6	73	79
Linguère	An. gambiae s.l.	33	8	41	66	107
	An. gambiae s.l.	40	23	63	192	255
Ranérou	An. pharoensis	I	0	I	0	I
	An rufipes	I	I	2	2	4
	An. gambiae s.l.	42	55	97	112	209
Dadau	An. pharoensis	63	62	125	10	135
Podor	An. ziemanni	5	3	8	I	9
	An rufipes	2	I	3	14	17

TABLE 27: SPECIES COMPOSITION ACCORDING TO THE SAMPLING METHOD IN NORTH AND EAST-CENTRAL DISTRICTS OF SENEGAL

Human biting rate and indoor resting density

Human biting rates were generally low in north and east-central Senegal, with the mean ranging between 0.04 in Matam and 4 bites per person/night in Podor. Similarly, the mean indoor resting collection was between 3 females per house at Bakel and 9.6 in Ranérou (Table 28b).

TABLE 28 A: HUMAN BITING RATE AND INDOOR RESTING DENSITIES FOR ANOPHELES GAMBIAE S.L. IN NORTHERN AND EAST-CENTRAL DISTRICTS

		В	akel			M	atam			ŀ	Kanel			Lir	nguère	•		Ra	nérou			Po	odor							
		HBR		HBR PSC		HBR PS		HBR		HBR		PSC		HBR	PSC		HBR		PSC		HBR		PSC	HBR		PSC		HBR		PSC
	in	out	Т		in	out	Т		in	out	Т	-	in	out	Т		in	out	Т		in	out	Т							
Human nights	12	12	24	20	12	12	24	20	12	12	24	20	12	12	24	20	12	12	24	20	12	12	24	20						
An. gambiae s.l.	6	4	10	59	Ι	0	I	88	9	2	11	81	33	8	41	66	40	23	63	192	42	55	97	112						
HBN	0.5	0.3	0.4	3	0.1	0	0.04	4.4	0.8	0.2	0.5	4.1	2.8	0.7	1.7	3.3	3.3	1.9	2.6	9.6	3.5	4.6	4	5.6						

In = indoors, out = outdoors, T = total.

TABLE 28 B: INDOOR RESTING ANOPHELES SPECIES COMPOSITION IN THE VILLAGES OF THE NORTH AND EAST-CENTRALDISTRICTS OF SENEGAL IN OCTOBER-NOVEMBER 2015. N = TOTAL COLLECTED

Districts	Sites	An. ga	mbiae s.l.	An. p	haroensis	An.	rufipes	An. :	ziemanni
		Ν	Density	Ν	Density	N	Density	N	Density
Linguère	Barkedji	63	6.3	0	0	0	0	0	0
	Warkhokh	3	0.3	0	0	0	0	0	0
Kanel	Dembancane	79	7.9	0	0	72	7.2	0	0
	Aoure	2	0.2	0	0	I	0.1	0	0
Ranérou	Fourdou	58	5.8	0	0	0	0	0	0
	Oudalaye	134	13.4	0	0	2	0.2	0	0
Podor	Ndiayene-Pendao	79	7.9	9	0.9	7	0.7	I	0.1
	Niandane	33	3.3	I	0.1	7	0.7	0	0
Matam	Sadel	47	4.7	0	0	205	20.5	0	0
	Nabadji Civol	41	4.1	0	0	9	0.9	0	0
Bakel	Gabou	22	2.2	0	0	0	0	0	0
	Moudery	37	3.7	0	0	35	3.5	0	0

TABLE 28 C: HUMAN BITING RATE AND PARITY RATE OF ANOPHELES GAMBIAE S.L. AND
AN. PHAROENSIS IN VILLAGES IN THE NORTH AND EAST-CENTRAL DISTRICTS OF
SENEGAL IN OCTOBER-NOVEMBER 2015

Districts	Sites	An. gan	nbiae s.l.	An. ph	aroensis
		HBR	PR	HBR	PR
Linguère	Barkedji	1.75	28.6	0	0
	Warkhokh	1.7	71.4	0	0
Kanel	Dembancane	0.9	100	0.1	0
	Aouré	0	0	0	0
Ranérou	Fourdou	1.1	66.7	0	0
	Oudalaye	4.2	46.4	0.1	0
Podor	N. Pendao	3.75	48.3	6.7	42.6
	Niandane	4.3	32.4	3.7	51.4
Matam	Sadel	0	0	0,4	0
	Nabadji Civol	0	0	0	0
Bakel	Gabou	0.2	0	0	0
	Moudery	0.7	33.3	0.2	100

PR = %parity rate

HBR : human biting rate (Number of bites per human per night)

3.3.5 NIAYES (SEPTEMBER AND NOVEMBER 2015)

Sampling of Anopheles populations was conducted in the villages of Diamballo and Ngadiaga by HLC and PSC and in the villages of Touba Tawfekh, Beer and Thiaye by only PSC. Anopheles gambiae s.l. was the only species captured in the Niayes area during September and November (Table 29). The average human biting rate was 9.3 bites per human/night, with a higher rate in Ngadiaga (17 bites per human/night) compared with Diamballo (2 bites per human/night). The indoor resting catch was relatively low in Diamballo at 6 females per room and even lower in Ngadiaga (1). In other villages, the lowest indoor resting density was recorded in Beer (0.3) whereas Thiaye (17.5) and Touba Tawfekh (22 females per room) had much higher resting densities.

Of 227 An. gambiae s.l. analyzed for sporozoites only one was positive (0.4%).

Species identification of An. gambiae s.l. (136 specimens) revealed the presence of 127 An. arabiensis (93.4%), 1 An. melas (1.52%) and 8 unspecified. The analysis of 54 blood meals taken from endophilic females including two mixed blood-meals, 30 from humans (55.5%), 11 bovine (20.4%), 11 equine (20.4%), and 4 unspecified.

TABLE 29A: ANOPHELES GAMBIAE S.L. INDOOR RESTING DENSITY (IRD) AND HUMAN BITING RATE IN VILLAGES OF THE NIAYES AREA (SEPTEMBER AND NOVEMBER 2015)

		PSC				HLC		
	Nb. rooms	An. gambiae s.l.	IRD	H/N	Indoor	Outdoor	Total	HBR
Beer	10	3	0.3					
Diambalo	10	59	5.9	12	12	10	22	1.8
Ngadiaga	10	11	1.1	12	127	78	205	17.1
Thiaye	10	175	17.5					
Touba Tawfekh	10	220	22					
Total	50	468	9.4	24	139	88	227	9.4

3.3.6 FLOODED AREAS IN THE SUBURBS OF DAKAR (PIKINE AND GUEDIAWAYE)

In this area, vector susceptibility to insecticides and mosquito species composition was monitored. All 208 identified specimens were identified by PCR as being *An. arabiensis* (96 in Pikine and 112 Guédiawaye).

3.3.7 GUINGUINÉO DISTRICT (OCTOBER 2015)

The results show that An. gambiae s.l. was the only species complex collected resting indoors and was the main species caught biting humans in October. Human biting densities were low (less than 1 bite per human/night), while the indoor resting density was slightly higher at 3.6 females per room.

3.3.8 RICHARD-TOLL (OCTOBER 2015)

There were no HLC collections in Richard-Toll. In total, 388 female An. gambiae s.l., 18 An. funestus s.l. and 19 An. pharoensis were collected resting indoors in 10 villages, with an average of 3.9 females per room/night.

3.4 SUSCEPTIBILITY OF MALARIA VECTORS TO INSECTICIDES WITH IMPREGNATED PAPERS

The results of WHO tube assays (Table 30a) show resistance of Anopheles gambiae s.l. to all five pyrethroid insecticides tested in all districts, except in rare cases where susceptibility was recorded in Koungheul (alpha-cypermethrin and cyfluthrin) and Richard-Toll (lambda-cyhalothrin). The same trend of widespread resistance is recorded for organochlorines, although in some cases susceptibility was noted with dieldrin (Fatick, Koungheul and Koumpentoum). In the Niayes area where An. arabiensis is predominant, the kdr west mutation was more frequent than the kdr east mutation (Table 30b).

For organophosphates the vector populations are largely susceptible, although there are worrying signs of resistance to pirimiphos-methyl in Koungheul where mortality was 95.2%. This should be investigated further. There was also resistance to fenitrothion (Guédiawaye and Niayes) and malathion (Pikine) recorded. *An. gambiae* also showed susceptibility to carbamates in all districts except in Ndoffane and Niayes where early signs of resistance were observed and in the suburbs of Dakar (Pikine and Guediawaye).

In Malam Hodar, Ndoffane, Guingueneo and Richard Toll not all insecticides were tested due to lack of larvae following heavy rainfall. We recommend that future resistance testing should focus only on insecticides that can be used for IRS and LLIN.

IRS status	Districts	Delta- methrin 0.05%	Lambda- cyhalothrin 0.05%	Permethrin 0.75%	Alpha cypermethrin 0.1%	Cyfluthrin 0.15%	DDT 4%	Dieldrin 4%		Fenitro- thion 1%	Malathion 5%	Bendiocarb 0.1%
IRS 5 years	Koumpentoum	63	56	77	84	71	74	98	100	100	100	99
IRS 5 years	Malem Hodar	60	-	47	-	-	65	-	100	100	-	100
IRS 4 years	Koungheul	85	98	92	100	98	91	100	95	100	100	100
IRS I year	Nioro	83	82	64	97	77	79	93	100	100	100	100
Former IRS	Velingara	88	77	92	90	65	83	92	99,3	100	100	99
	Fatick	77	88	80	84	91	53	99	100	100	100	100
	Bambey	86	85	85	81	84	70	97	100	100	100	100
	Niakhar	90	94	94	92	96	56	94	100	100	100	100
	Ndoffane	88	-	60	-	-	43	-	100	-	-	96
NO IRS	Mbour	69	91	89	86	70	36	92	100	99	100	100
	Pikine	62	23	22	64	25	I	14	100	100	95	63
	Guediawaye	47	17	3	43	32	I	32	100	74	100	35
	Niayes	52	64	38	68	45	28	49	99,5	95	100	90
_	Richard Toll	78	100	23	-	-	54	-	-	100	-	-
	Guingueneo	95	-	84	-	-	64	-	-	100	-	-

TABLE 30A : SUSCEPTIBILITY STATUS OF AN. GAMBIAE S.L. TO PYRETHROID, CARBAMATE, ORGANOPHOSPHATE AND ORGANOCHLORINE INSECTICIDES (N = 100 FOR ALL SITES/INSECTICIDE)

TABLE 30B: KDR WEST AND EAST FREQUENCIES FOR AN. ARABIENSIS (125) AND ONE AN. MELAS (1) WHICH SURVIVED SUSCEPTIBILITY TESTS TO DDT OR PYRETHROIDS IN TWO VILLAGES OF THE THE NIAYES AREA

Niayes area villages		Kdr eas	st			Kdr we	st	
Mayes area Mages	RR	SR	SS	Total	RR	SR	SS	Total
Mont Rolland	13 (20.6)	3 (4.8)	I	17	22 (34.9)	23 (36.5)	I	46
Thiaye*	7 (11.3)	2 (3.2)	3	12	34 (54.8)	16 (25.8)	0	50
Total	20 (16)	5 (4)	4	29	56 (44.8)	39	I	96

* 1 female of An. melas

3.5 SUSCEPTIBILITY OF MALARIA VECTORS TO INSECTICIDES WITH CDC BOTTLE TEST

Results of the tests are shown in Table 31. WHO tube tests and bottle bioassays were done during different months and this may partially explain the difference in results for some insecticides between the two test types. In addition, it will be important to carry out PCR identification to confirm the species composition of each test. Furthermore, pirimiphos-methyl is known to be unstable when used in bottles so the WHO results are likely more reliable for this compound. In Kédougou, susceptibility tests with CDC bottle bioassays were performed with three insecticides (DDT, permethrin and deltamethrin). An. gambiae s.l. were resistant to DDT with 35.1% mortality (n = 91) and permethrin with 75.2% mortality (n = 97). Suspected resistance was noted for deltamethrin with 97% mortality (n = 100).

Bottle bioassays with synergists indicated the involvement of mixed function oxidases in Richard Toll and Rufisque against DDT and permethrin, although full susceptibility was not restored (Table 32).

	Districts	Deltamethrin I 2.5µl/Btl	Permethrin 21.5µl/Btl	DDT 100µl/Btl	Pirimiphos methyl 20µl/Btl	Bendiocarb I 2µl/Btl
IRS 5 years	Koumpentoum	100 (105)	96 (109)	96 (101)	-	100 (106)
IRS 5 years	Malem Hodar	100 (100)	-	83 (108)	-	100 (100)
IRS 4 years	Koungheul	98 (108)	99 (216)	97 (2016)	99 (105)	100 (105)
IRS I year	Nioro	100 (110)	98 (102)	92 (103)	-	100 (105)
	Pikine	88 (106)	87 (101)	36 (105)	56 (106)	100 (106)
	Guediawaye	93 (107)	87 (105)	2 (101)	61 (98)	100 (96)
No IRS	Kedougou	98 (62)	86 (97)	36 (66)	-	-
	Richard Toll	91 (106)	84 (110)	25 (113)	99 (104)	100 (110)
	Guinguineo	97 (108)	96 (98)	65 (105)	-	100 (108)
	Rufisque	95 (102)	71 (112)	15 (117)	-	100 (100)

TABLE 31: SUSCEPTIBILITY STATUS OF AN. GAMBIAE S.L. WITH CDC BOTTLE TESTS

(): Number of mosquitoes exposed

TABLE 32: SYNERGIST BOTTLE ASSAY TO DETERMINE THE INVOLVEMENT OF METABOLIC MECHANISMS IN VECTOR RESISTANCE TO DDT AND PERMETHRIN

IRS status	Districts	DI	от	Permethrin			
ins status	Districts	DDT only	DDT + EA	Permethrin only	Permethrin + PBO		
IRS	Koumpentoum	96 (101)	99 (102)	96 (109)	-		

NON-IRS	Richard Toll	25 (113)	67 (88)	84 (110)	96 (71)
	Rufisque	15 (117)	27 (98)	71 (112)	91 (106)

4. CONCLUSION

This report presents results monitoring the residual effectiveness of the spray campaign and entomological surveillance in Senegal during the rainy season (July-November 2015). Pirimiphos-methyl IRS lasted for most of the malaria transmission period. It should be noted that due to the lower efficacy six months post treatment, the start of the IRS campaign could be moved to July in efforts to cover the entire transmission period of July to November. The residual duration of bendiocarb applied in Nioro was very low. However, the residual duration of pirimiphos-methyl in the same area was also very low compared to all other districts. This may indicate a problem with spray implementation or the specific conditions in this area result in shorter residual performance (e.g. mud composition).

In general, the population density of malaria vectors was low in the districts of North and Central Senegal including districts under IRS treatment. The biting rates were considerably higher in the south of the country in Velingara, Tambacounda and Kedougou. It was also inferred that in the more arid areas of North and Central Senegal populations of vectors show tended towards endophily unlike those in the South, which seemed more exophilic when comparing indoor biting rates to indoor resting densities via PSCs.

Susceptibility tests of Anopheles gambiae s.l. to insecticides generally confirm widespread susceptibility to organophosphates and carbamates with resistance to pyrethroids and organochlorines. Resistance is higher in flooded areas in the suburbs of Dakar and in the Niayes area where pesticides are used to protect vegetables (market gardening). Processing of laboratory samples is proceeding and results will be presented in a supplementary document in early 2017.

ANNEX A:

FIELD VISITS CARRIED OUT IN THE RAINY SEASON OF JULY-NOVEMBER 2015

N°	Districts	Dates	Equipes	Véhicules
Ι	Malem Hodar - Koungheul Koumpentoum	29 Juillet – 07 Août 2015	M D Sy, C Lo & I Thiam	03 NU IT 159
2	Nioro - Kédougou	30 Juillet – 08 Août 2015	M Diagne, M N Faye & B Ndiouck	03 NU IT 154
3	Malem Hodar –Kaffrine Koumpentoum	21 Aout - 05 Septembre 2015	M D Sy, C Lo & I Thiam	03 NU IT 159
4	Koungheul - Vélingara	21 Aout - 05 Septembre 2015	M Diagne, M N Faye, A K Dia & B Ndiouck	03 NU IT 154
5	Nioro - Ndoffane	24 Aout - 06 Septembre 2015	M W Senghor, Y Coulibaly, A Y Ndiaye & O Niang	03 NU IT 165
6	Koumpentoum	II au 20 Septembre 2015	M D Sy, C Lo & I Thiam	03 NU IT 159
7	Koungheul	II au 20 Septembre 2015	M Diagne, M N Faye, A Y Ndiaye & B Ndiouck	03 NU IT 154
8	Malem Hodar	II au 20 Septembre 2015	M W Senghor, Y Coulibaly, E Diouf & O Niang	03 NU IT 165
9	Zones inondées et Niayes	09- 20 Septembre 2015	A Konaté, PM Fall, A Amblat, OK Guèye, B Niang & MF Tall	DK 0891 EP 96
10	Nioro	28 Sept 03 Oct 2015	M D Sy, C Lo, A Y Ndiaye & I Thiam	03 NU IT 159
11	Koumpentoum - Koungheul	12 au 23 Octobre 2015	M D Sy, C Lo, A K Dia & I Thiam	03 NU IT 159
12	Kédougou - Tambacounda	05 – 15 Octobre 2015	M Diagne, M N Faye, M Fall & B Ndiouck	03 NU IT 154
13	Guinguinéo - Richard- Toll	12 – 24 Octobre 2015	M W Senghor, Y Coulibaly, E Diouf & O Niang	DK 4561 AC
14	Malem Hodar - Kaffrine	28 Oct 04 Nov. 2015	M W Senghor, A K Dia & O Niang	DK 4561 AC
15	Nioro - Ndoffane	29 Oct - 05 Nov. 2015	M D Sy & I Thiam	03 NU IT 159
16	Vélingara	28 Oct. – 06 Novembre 2015	M Diagne & B Ndiouck	03 NU IT 154
17	Zones inondées et Niayes	15 Octobre – 07 Nov. 2015	A Konaté, PM Fall, AA Amblat, OK Guèye, B Niang & MF Tall	DK 0891 EP 96
18	Koumpentoum - Koungheul	18-30 Novembre 2016	M D Sy & I Thiam	03 NU IT 159
19	Malem Hodar - Nioro	18-30 Novembre 2016	M W Senghor, M N Faye & O Niang	DK 4561 AC