

U.S. PRESIDENT'S MALARIA INITIATIVE





# PMI VECTORLINK LIBERIA PROJECT PMI VECTORLINK LIBERIA ENTOMOLOGICAL MONITORING FINAL REPORT

**OCTOBER 1, 2019–SEPTEMBER 30, 2020** 

**Recommended Citation:** The PMI VectorLink Project. Annual Report: October 1, 2019 - September 30, 2020. Rockville, Maryland. The PMI VectorLink Project, Abt Associates Inc.

Contract: AID-OAA-I-17-00008 Task Order: AID-OAA-TO-17-00027 Submitted to: United States Agency for International Development/PMI Submitted: February 2, 2021

Approved: June 14, 2021



Abt Associates 1 6130 Executive Blvd1 1 Rockville, MD 208521 T. 301.347.5000 1 F. 301.913.9061 1 www.abtassociates.com

## CONTENTS

#### Acronymsiii

| Ex | ecutiv  | ve Sum         | mary                                                                                             | 1    |
|----|---------|----------------|--------------------------------------------------------------------------------------------------|------|
| 1. | Int     | roducti        | 0 <b>n</b>                                                                                       | 3    |
| 2. | Ma      | terials a      | and Methods                                                                                      | 6    |
|    | 2.1     | Sampl          | ng Sites and Collection Methods                                                                  | 6    |
|    |         | 2.1.1          | Sampling Sites                                                                                   | 6    |
|    |         | 2.1.2          | Pyrethrum Spray Catches                                                                          | 6    |
|    |         | 2.1.3          | CDC Light Trap Collection                                                                        | 7    |
|    |         | 2.1.4          | Human Landing Collection                                                                         | 7    |
|    | 2.2     | Insect         | cide Resistance Monitoring                                                                       | 7    |
|    |         | 2.2.1          | Insecticide Susceptibility Test for Pyrethroids- CDC Bottle Assay Method                         | 8    |
|    |         | 2.2.2          | Insecticide Susceptibility Test for Chlorfenapyr – CDC Bottle Assay Method                       | 8    |
|    |         | 2.2.3          | Synergist Assays - CDC bottle assay Method                                                       | 9    |
| 3. | Re      | sults Ar       | nd Discussion                                                                                    | 10   |
|    | 3.1     | Vector         | Bionomics                                                                                        | 10   |
|    | 011     | 3.1.1          | Vector Abundance and Species Composition                                                         |      |
|    |         | 3.1.2          | Indoor Resting Density                                                                           |      |
|    |         | 3.1.3          | Abdominal Stage                                                                                  | .14  |
|    |         | 3.1.4          | CDC Light Trap Collections                                                                       | .16  |
|    |         | 3.1.5          | Human Biting Rate and Pattern                                                                    | .18  |
|    | 3.2     | Insect         | cide Resistance Monitoring                                                                       | 22   |
|    |         | 3.2.1          | Insecticide Susceptibility Test for Pyrethroids                                                  |      |
|    |         | 3.2.2          | Insecticide Susceptibility Testing of Chlorfenapyr                                               | . 23 |
|    |         | 3.2.3          | Synergist Assays - CDC bottle assay Method                                                       | . 23 |
|    | 3.3     | Labora         | atory Analyses                                                                                   | 24   |
|    | 3.4     |                | D-19 Prevention Measures                                                                         |      |
|    | 3.5     | Capac          | ty Building Activities                                                                           | 25   |
| 4. | Ob      | servatio       | ons and Conclusions                                                                              | . 26 |
| 5. | Ret     | ference        | 5                                                                                                | . 29 |
| 6. | An      | nexes          |                                                                                                  | 31   |
|    | Ann     | ex 1: <i>A</i> | a. gambiae s.l. Collected by PSC, October 2019 – March 2020 and August-September 2020            | 31   |
|    |         |                | n. funestus s.l. Collected by PSC, October 2019–March 2020                                       |      |
|    | Ann     | ex 3: Ai       | a. gambiae s.l. Collected by CDC LT, Indoor, October 2019–March 2020 and August-September 2020   | .32  |
|    |         |                | n. funestus s.l. Collected by CDC LT, Indoor, October 2019–March 2020 and August - September 202 | 032  |
|    | Ann     |                | a. gambiae s.l. Collected by HLC, Indoor, January–March 2020 and                                 | 20   |
|    | Ann     |                | t - September 2020<br><i>a. gambiae</i> s.l. Collected by HLC, Outdoor, January–March 2020 and   | 32   |
|    | 1 11111 |                | t - September 2020                                                                               | 33   |
|    | Ann     |                | a. funestus s.l. Collected by HLC, Indoor, January–March 2020 and                                |      |
|    |         | Augus          | t - September 2020                                                                               | 33   |

| Annex 8: An. funestus s.l. Collected by HLC, Outdoor, January–March 2020 and                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| August - September, 2020                                                                                                                                                                                                                                         |
| August - September 2020                                                                                                                                                                                                                                          |
| LIST OF TABLES                                                                                                                                                                                                                                                   |
| table 1: Summary of sites planned for entomological surveillance and insecticide resistance monitoring activities                                                                                                                                                |
| Table 2: Adult Mosquito Collection Methods Used For Longitudinal Monitoring                                                                                                                                                                                      |
| Table 3: Summary of Insecticide Susceptibility and Synergist Assays Performed                                                                                                                                                                                    |
| Table 4: Total Mosquitoes Collected from Eight Sentinel Sites, October 2019 – March 2020 and August – September 2020 (All Collection Methods)       10                                                                                                           |
| Table 5: Anopheles and other Mosquitoes Species Collected in Eight Sentinel Sites, October 2019 - March 2020 and         August – September 2020.         13                                                                                                     |
| Table 6: Table 6: Indoor densities of An. gambiae s.l. Collected by PSC, October 2019–March 2020 and August-         SEPTEMBER 2020.         14                                                                                                                  |
| <ul> <li>Table 7: An. gambiae s.l. Collected by CDC LT, Indoor, October 2019–March 2020 and August - September 2020 16</li> <li>Table 8: Mortality Rate of An. gambiae s.l. per Exposure to Chlorfenapyr Using CDC Bottle Assay and Time Post Exposure</li></ul> |
| Table 9: Summary of Capacity Building Activities   25                                                                                                                                                                                                            |
| LIST OF FIGURES                                                                                                                                                                                                                                                  |
| Figure 1: VectorLink Liberia Entomological Monitoring, Insecticide Resistance and Durability Monitoring Sites,<br>October 2019 – September 2020                                                                                                                  |
| Figure 2: Species Composition of <i>Anopheles</i> Mosquitoes Collected by PSC, HLC and CDC-LT from Eight Sentinel Sites, oct 2019 – March 2020 and August – September 2020                                                                                       |
| Figure 3: Distribution of <i>An. gambiae</i> s.l. Mosquitoes by Abdominal Stage, Collected by PSC in Six Sites, March 2020 14<br>Figure 4: Distribution of <i>An. gambiae</i> s.l. Mosquitoes by Abdominal Stage, Collected by PSC in Eight Sites, August 2020   |
| 15<br>Figure 5: Distribution of <i>An. gambiae</i> s.l. Mosquitoes by Abdominal Stage, Collected by PSC in Eight Sites, September<br>2020                                                                                                                        |
| Figure 6: Mean Densities per trap Per Night of <i>An. gambiae</i> s.l. Samples Collected by CDC LT, Indoor, October 2019–<br>March 2020 and August-September 2020                                                                                                |
| Figure 7: <i>An. funestus</i> s.l Numbers Collected by CDC-LT Indoors, per trap per night, October 2019–March 2020 and August – September 2020                                                                                                                   |
| Figure 8: Nightly Human Biting Rate of <i>An. gambiae</i> s.l. Collected from Indoor and Outdoor HLC, January – March 2020 AND August - September 2020                                                                                                           |
| Figure 9: Nightly Human Biting Rate of <i>An. funestus</i> s.l. Collected from Indoor and Outdoor HLC, January–March 2020<br>and August - September 2020                                                                                                         |
| Figure 10: Hourly Human Biting Rate of <i>An. gambiae</i> s.l. Collected from Indoor HLC in Original Monitoring Sites,<br>January –March 2020 and August - September 2020                                                                                        |
| Figure 11: Hourly Human Biting Rate of <i>An. gambiae</i> s.l. Collected from Indoor HLC in Four ITN Monitoring Sites,<br>January – March 2020 and August - September 2020                                                                                       |
| Figure 12: Hourly Human Biting Rate of An. gambiae s.l. Collected from Outdoor HLC in Original Monitoring Sites,                                                                                                                                                 |
| January – March 2020 and August - September 2020                                                                                                                                                                                                                 |
| Figure 13: Hourly Human Biting Rate of An. gambiae s.l Collected from Outdoor HLC in Four ITN Monitoring Sites,                                                                                                                                                  |
| January – March 2020 and August - September 2020                                                                                                                                                                                                                 |
| Figure 14: Percentage Mortality of An. gambiae s.l. from Different Sites in Liberia Exposed to 1X Deltamethrin                                                                                                                                                   |
| Diagnostic Dose and to PBO using CDC Bottle Assays, February- September 2020                                                                                                                                                                                     |
| Figure 15: MORTALITY rate of AN. GAMBLAE S.L. per EXPOSURE TO chlorfenapyr Using CDC bottle assay 24                                                                                                                                                             |

# ACRONYMS

| CDC    | Centers for Disease Control and Prevention                   |
|--------|--------------------------------------------------------------|
| CHW    | Community health worker                                      |
| ELISA  | Enzyme-linked immunosorbent assay                            |
| HLC    | Human landing catch                                          |
| IRS    | Indoor Residual Spray                                        |
| ITNs   | Insecticide-Treated Nets                                     |
| LIBR   | Liberia Institute for Biomedical Research                    |
| LISGIS | Liberia Institute of Statistics and Geo-Information Services |
| LT     | Light trap                                                   |
| MOH    | Ministry of Health                                           |
| NMCP   | National Malaria Control Program                             |
| PBO    | Piperonyl Butoxide                                           |
| PCR    | Polymerase chain reaction                                    |
| PMI    | President's Malaria Initiative                               |
| PSC    | Pyrethrum spray catch                                        |
| SBC    | Social and behavior change                                   |
| SOP    | Standard Operation Procedure                                 |
| UL     | University of Liberia                                        |

## EXECUTIVE SUMMARY

Malaria vector monitoring and insecticide resistance testing were the main activities performed by VectorLink Liberia in collaboration with National Malaria Control Program (NMCP) from October 2019 to September 2020. Monthly longitudinal entomological monitoring (vector bionomics) data were collected from four sites between October 2019 and March 2020: Fissebu (Lofa County), Koryah (Bong County), Madina (Grand Cape Mount County) and Saint John (Grand Bassa County). From January to March (2020), the team performed vector bionomics monitoring collections at four new sites: Gbedin (Nimba County), Jackson Farm (Margibi County), Koryah (Bong County) and Suehn Town (Bomi County).

The number of sites was increased to expand the entomological indicator coverage in relation to the planned distribution and performance of new generation Interceptor® G2 nets. This net contains a pyrethroid (alpha-cypermethrin) and chlorfenapyr which is an insecticide that disrupts the insect's ability to produce energy and results in mortality. The Interceptor® G2 net is planned for mass distribution in Liberia around June, 2021. Vector bionomics monitoring data included vector species composition, distribution, behavior, and sporozoite rate

In the field, three different methods of collection were used: pyrethrum spray catch (PSC), human landing catch (HLC), and Centers for Disease Control and Prevention light traps (CDC-LTs). Activities were suspended at all eight sites from April to July 2020 due to travel restrictions related to the COVID-19 pandemic. Collections resumed in August 2020 and data were collected for August and September.

Insecticide resistance tests were conducted in seven sentinel sites across the country. The susceptibility status of *Anopheles gambiae* s.l. to pyrethroids was assessed using the CDC bottle bioassay method. Synergist tests were conducted with pyrethroids after pre-exposure to piperonyl butoxide (PBO) and pyrethroids only without PBO to assess the role of a synergist in enhancing the vector population susceptibility to pyrethroids.

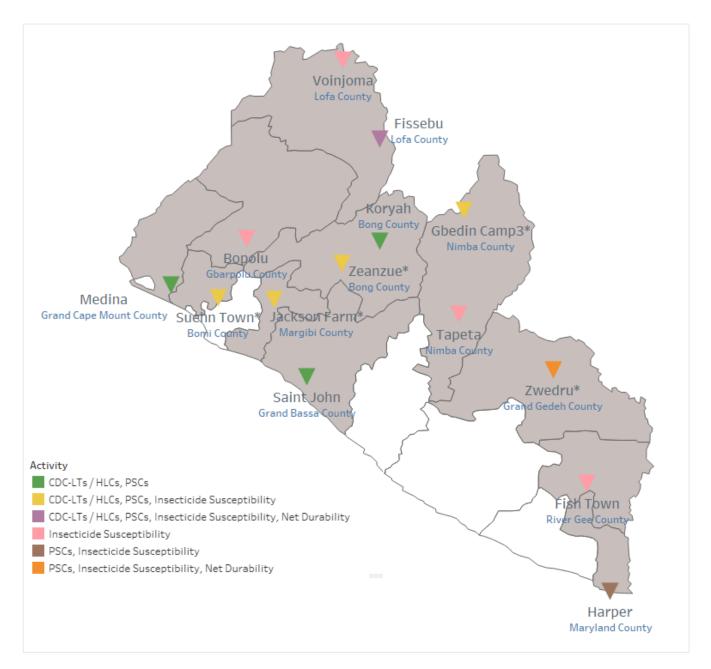
In the eight sentinel sites, using the three methods of collection (PSC, HLC, and CDC LTs), 5,157 *An. gambiae* s.l. and 742 *Anopheles funestus* s.l. were collected in eight months (87.4% and 12.6%, respectively). The predominant vector was *An. gambiae* s.l. in six out of eight sites: Koryah (60.2%), Madina (100%), Saint John (99.1%), Jackson Farm (98.7%), and Gbedin (96.8%). *Anopheles funestus* s.l. was more prevalent in Zeanzue (70.2%) and Fissebu (66.8%). Due to the interruption of field collection due to COVID-19, it was not possible to observe the variation in seasonal trends in vector abundance in relation to the rainy and dry seasons.

Among the *Anopheles* mosquitoes collected using PSC, the highest indoor residual density of *An. gambiae* s.l. was observed in: Gbedin (13.6 mosquitoes per house per day in September 2020), Suehn Town (8.2 mosquitoes per house per day in March 2020), and Jackson Farm (7.8 mosquitoes per house per day in January 2020). For CDC-LTs collections, traps were installed only indoors in the eight sites, and the highest numbers of *An. gambiae* s.l. were recorded in Gbedin (34.5 mosquitoes per trap per night in September 2020 and 18.8 mosquitoes per trap per night in August 2020). HLCs were performed indoors and outdoors at all eight sites and the highest indoor human biting rate was 1.00 bite per person per hour in Suehn Town and 0.84 bite per person per hour in Jackson Farm. With outdoor collections, the rates were 1.11 and 1.06 bite per person per hour in Suehn Town and Jackson Farm, respectively. The vector was resistant to deltamethrin and permethrin, mortality rates

ranging between 37 and 57% across all sites. Pre-exposure of *An. gambiae* s.l. samples to the synergist PBO increased susceptibility to both deltamethrin and permethrin. For deltamethrin, susceptibility was fully restored (98% mortality) in three of the six sites. At the Jackson Farm site, for permethrin, after pre-exposure to PBO mortality increased from 37% to 96%. Chlorfenapyr was tested using *An. gambiae* s.l. mosquitoes, and after 24 hours up to 72 hours holding period, 100% mortality was recorded in all the sites from October 2019 to September 2020.

## I. INTRODUCTION

Indoor residual spraying (IRS) was implemented in Liberia by the President's Malaria Initiative (PMI) in collaboration with the NMCP from 2009 to 2013. Insecticide resistance monitoring during this time indicated that *Anopheles gambiae* s.l., the major vector of malaria in Liberia was resistant to pyrethroids. Therefore, in 2013, after presenting empirical evidence on vector resistance to pyrethroids and evidence of susceptibility to pirimiphos-methyl, the NMCP and IRS Task Force switched from using pyrethroids to pirimiphos-methyl for IRS in 2013. After the 2013 campaign, IRS was stopped due to the increased costs of non-pyrethroid insecticide.


After the withdrawal of IRS in 2014, PMI and NMCP continued monthly routine entomological monitoring to generate data on vector bionomics including species composition, distribution, and behavior. In addition, a container insectary was established on the NMCP compound for rearing *An. gambiae* for insecticide susceptibility tests and to perform morphological species identification of field-collected mosquitoes.

Data collection on insecticide resistance among the malaria vectors is used to better understand the evolution of the resistance and to inform the selection of vector control interventions, mainly ITNs.

From 2016 through September 2018, monthly routine entomological monitoring was conducted in three sites: Frank Town (Montserrado County), Jeneta (Margibi County) and Tomato Camp (Bong County), to replace these three sites above, starting in October 2018, VectorLink began monthly routine entomological monitoring at four sentinel sites: Fissebu (Lofa County), Koryah (Bong County), Madina (Grand Cape Mount County) and Saint John (Grand Bassa County), (Figure 1). Starting in January 2020, four new sites were added to collect baseline vector bionomics data before the planned mass distribution of Interceptor® G2 ITNs in 2021. The four added sites were: Gbedin (Nimba County), Jackson Farm (Margibi County), Koryah (Bong County) and Suehn Town (Bomi County) for a total of eight sites. Pyrethrum Spray Catches (PSCs), Human Landing Catches (HLCs), and Centers for Disease Control light traps (CDC-LTs) were used to collect mosquitoes and allow for monitoring seasonal vector density, species composition, and behavior.

Insecticide resistance testing activities were conducted in seven sites, where VectorLink assessed *An. gambiae* s.l. susceptibility to selected insecticides, along with the synergist PBO.

#### FIGURE 1: VECTORLINK LIBERIA ENTOMOLOGICAL MONITORING, INSECTICIDE RESISTANCE AND DURABILITY MONITORING SITES, OCTOBER 2019 – SEPTEMBER 2020



The main objectives of VectorLink Liberia entomological monitoring activities are as follows:

- Assess *Anopheles* vector bionomics, including species composition, density, and behavior, in eight sites across seven counties.
- Conduct molecular analyses to determine the species, sporozoite infection rates, and blood-meal sources of mosquitoes collected during routine collection, as well as identify potential mutations contributing to insecticide resistance.
- Determine insecticide susceptibility of An. gambiae s.l., the primary local malaria vector, to pyrethroids

(with pre-exposure to PBO) and to chlorfenapyr in ten sites from nine counties.

- Determine insecticide susceptibility of *An. funestus* s.l. in sites where it is the dominant vector.
- Maintain and support a functional insectary.
- Build local capacity in entomological surveillance methods and techniques through formal and informal training.

# 2. MATERIALS AND METHODS

## 2.1 SAMPLING SITES AND COLLECTION METHODS

### 2.I.I SAMPLING SITES

VectorLink, worked with the NMCP and the University of Liberia (UL), to conduct monthly vector monitoring activities in eight sites and insecticide resistance testing in seven sites (Table 1). Originally, the plan was to conduct resistance testing for chlorfenapyr and pyrethroids in ten sites from nine counties, but testing could not be conducted in three of the sites from three counties due to COVID-19. They are now included to be done in Year 4. Three methods were used to collect adult mosquitoes in the routine monitoring sites: PSC, HLC, and indoor CDC-LTs (Table 2).

| Province/<br>Region | County           | Site            | PSC /<br>CDC-LT /<br>HLCs | Insecticide<br>Susceptibility | ITN<br>Durability<br>Monitoring |
|---------------------|------------------|-----------------|---------------------------|-------------------------------|---------------------------------|
| North Central       | Lofa             | Fissebu         | Х                         |                               | Х                               |
|                     | Bong             | Koryah          | X                         |                               |                                 |
|                     | _                | Zeanzue*        | X                         | Х                             |                                 |
|                     | Bomi             | Tubmanburg      |                           | ND                            |                                 |
|                     |                  | Suehn Town*     | X                         | Х                             |                                 |
|                     | Nimba            | Gbedin Camp 3*  | X                         | Х                             |                                 |
| South Central       | Grand Bassa      | LAC Plantation^ |                           | Х                             |                                 |
|                     |                  | Saint John      | Х                         |                               |                                 |
|                     | Margibi          | Jackson Farm*   | Х                         | Х                             |                                 |
|                     | Monteserrado     | 15 Gate         |                           | Х                             |                                 |
| North Western       | Grand Cape Mount | Medina          | Х                         |                               |                                 |
| South Eastern A     | Grand Gedeh      | Zwedru          |                           |                               | Х                               |
| South Eastern B     | Maryland         | Harper          |                           | ND                            |                                 |
|                     | River Gee        | Fish Town       |                           | ND                            |                                 |
|                     | River Cess       | Cestos City     |                           | Х                             |                                 |

#### TABLE 1: SUMMARY OF SITES PLANNED FOR ENTOMOLOGICAL SURVEILLANCE AND INSECTICIDE RESISTANCE MONITORING ACTIVITIES

\*New sites added in January 2020 to increase entomological data before mass campaign distribution of new nets (IG2s) planned for May 2021.  $^{=}$  LAC Plantation was replaced by Compound 3 and 15 Gate by Number 7, the nearest sites where larvae were available. ND = Not done due to COVID-19 restrictions but will be conducted in Year 4.

### 2.1.2 PYRETHRUM SPRAY CATCHES

In each site, PSCs were performed for two consecutive days sampling a total of 25 houses. The teams sprayed the commercial pyrethroid insecticide, Kwik,<sup>1</sup> according to VectorLink SOP (SOP03/01) following PMI guideline for COVID-19 mitigation measures.

<sup>1</sup> Kwik ingredients: Transfluthrin 0.05% ; Tetramethrin 0.20% ; B-Cyfluthrin 0.20% ; PBO 0.50% ; Solvent & Propellant 99.55%, ASI Al Sharhan Industries, Kuwait.

### 2.1.3 CDC LIGHT TRAP COLLECTION

CDC-LTs were used from September 2018 to December 2019 as a proxy for HLC and were installed indoor and outdoor. From January 2020, CDC-LTs were set-up only indoors at selected houses and performed according to VectorLink protocols (SOP01/01).

### 2.1.4 HUMAN LANDING COLLECTION

HLCs were conducted indoors and outdoors, starting in January 2020. HLCs were conducted both indoors and outdoors. In January and February 2020, HLCs were done using a mouth aspirator, but in March 2020, according to COVID-19 mitigation guidance, glass tubes were used for collections.

| Collection<br>method     | Time               | Frequency | Sample*                                                                                                                  | Indicator                                                                                |
|--------------------------|--------------------|-----------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| PSC                      | 5:00 am to 8:00 am | Monthly   | 25 houses per site over<br>2 consecutive days                                                                            | Indoor resting density: #<br>mosquitoes collected per<br>room                            |
| CDC LT<br>(Indoors only) | 6:00 pm to 6:00 am | Monthly   | Eight houses per site<br>(four houses per night),<br>using four baited,<br>indoor CDC LTs                                | Indoor trap density: #<br>mosquitoes collected per<br>trap per night                     |
| HLC                      | 6:00 pm to 6:00 am | Monthly   | Two houses per site<br>for two consecutive<br>nights using two<br>persons - one indoor<br>and one outdoor - per<br>house | Indoor and outdoor<br>human biting rate: # bites<br>per person per hour and<br>per night |

## TABLE 2: ADULT MOSQUITO COLLECTION METHODS USED FOR LONGITUDINAL MONITORING

\*All houses were randomly selected, and the same houses were visited each month, to the greatest extent possible.

A morphological identification of all mosquitoes collected through each method was done at each site under a dissection microscope by the technical team of VectorLink, NMCP, and UL. The counting of *An. gambiae* s.l. mosquitoes based on their blood-digestion stage are more accurate when samples are fresh. All *Anopheles* species were identified according to Coetzee et al., 2000. *Anopheles* samples were preserved on silica gel for further processing of the head-thorax portions in the laboratory at Liberia Institute for Biomedical Research (LIBR) using enzyme-linked immunosorbent assay (ELISA) for sporozoite rate assessment. Samples will also be processed at LIBR by polymerase chain reaction (PCR) technique for molecular identification of vector species and blood meal source determination.

## 2.2 INSECTICIDE RESISTANCE MONITORING

VectorLink, the NMCP, and Community Health Workers (CHWs) conducted insecticide resistance monitoring in seven sites (Table 3). Due to COVID-19 travel restrictions, it was not possible to cover all sites selected in the Year 3 work plan. Larvae were collected in the field and transported to the main insectary in Monrovia for rearing and testing of adult females according to SOP14/01. Rearing was done in a second room of the insectary to avoid contamination of the susceptible laboratory colony, used as control.

## TABLE 3: SUMMARY OF INSECTICIDE SUSCEPTIBILITY AND SYNERGIST ASSAYS PERFORMED

| Region          | County       | Site           | Insecticide Tested for Susceptibility |
|-----------------|--------------|----------------|---------------------------------------|
| North Central   | Bong         | Zeanzue        | Deltamethrin ±PBO/ Chlorfenapyr       |
|                 | Bomi         | Tubmanburg     | Not done due to COVID-19              |
|                 | DOIIII       | Suehn Town     | Deltamethrin ±PBO                     |
|                 | Nimba        | Gbedin Camp3   | Chlorfenapyr                          |
| South Central   | Grand Bassa  | LAC Plantation | Deltamethrin ±PBO/ Chlorfenapyr       |
|                 | Margibi      | Jackson Farm   | Permethrin ±PBO / Deltamethrin ±PBO   |
|                 | Monteserrado | Gate 15        | Deltamethrin ±PBO/ Chlorfenapyr       |
| South Eastern B | Maryland     | Harper         | Not done due to COVID-19              |
|                 | River Gee    | Fish Town      | Not done due to COVID-19              |
|                 | River Cess   | Cestos City    | Deltamethrin ±PBO/ Chlorfenapyr       |

\*Chlorfenapyr and deltamethrin were prioritized for testing field collected mosquitoes. Permethrin testing was conducted if there were enough mosquitoes reared.

For each test, the team preserved a subsample of dead mosquitoes as well as all the survivors, which were stored in labeled Eppendorf tubes for further molecular laboratory analysis.

### 2.2.1 INSECTICIDE SUSCEPTIBILITY TEST FOR PYRETHROIDS- CDC BOTTLE ASSAY METHOD

The susceptibility assays of *An. gambiae* s.l. to the pyrethroids (deltamethrin and permethrin) were performed using technical grade insecticide concentrations provided by CDC Atlanta according to SOP04/01. In Year 3, Liberia VectorLink tested 1x concentration (12.5 $\mu$ g per bottle) of deltamethrin and 1x concentration (21.5 $\mu$ g per bottle) of permethrin.

### 2.2.2 INSECTICIDE SUSCEPTIBILITY TEST FOR CHLORFENAPYR – CDC BOTTLE ASSAY METHOD

Chlorfenapyr is an insecticide with a slow mechanism of action used in combination with alpha-cypermethrin in the Interceptor® G2 ITNs. It was tested based on larvae availability and was conducted in fewer sites than planned due to the travel restriction related to COVID-19.

An. gambiae s.l. populations tested at the seven sites were susceptible to chlorfenapyr (Figure 15). In Jackson Farm and Zeanzue, 100% percent mortality was observed by 24 hours post-exposure (Figure 15), which corresponds to the mortality of lab colony mosquitoes tested using chlorfenapyr. Two sites – Gbedin and Compound 3 (first test) did not reach 100% mortality until 72 hours. However, the second test at Compound 3, reached 100% mortality at 48 hours.

The dilution process was done following the CDC bottle bioassay protocol. Each insecticide grade was diluted with 50 ml acetone per tube. Four bottles replicate were coated with one ml of different concentrations of the prepared insecticide solutions. One ml acetone only was used to coat the control bottles. All the bottles were kept covered overnight to dry before using the next day. Twenty-five female *An. gambiae* s.l. two to five days old were transferred into each of the bottles. The mortality was recorded every 15 minutes for up to two hours. *An. gambiae* s.l. was also tested for susceptibility to chlorfenapyr using the CDC bottle assay method as per the VectorLink SOP (SOP04/01). Acetone was used as a solvent to dilute chlorfenapyr to a concentration of 100 µg per bottle. Four bottles were coated with diluted chlorfenapyr. One bottle was coated with acetone only and

used as a control. A batch of 20-25 female *An. gambiae* s.l. mosquitoes (two to five-day-old) were transferred into each of the exposure and control bottles. Every 5 minutes the number of knockdowns was recorded up to one-hour exposure. Then, mosquitoes were transferred into cups and fed with a 10% sugar solution for holding up to 72 hours. Mortality was recorded every 24 hours for up to 72 hours or until 100% mortality was recorded, whichever came first.

### 2.2.3 SYNERGIST ASSAYS - CDC BOTTLE ASSAY METHOD

Pre-exposure to a synergist, PBO, was done before introducing mosquitoes to the diagnostic doses of deltamethrin and permethrin to see whether susceptibility could be restored. A concentration (100 $\mu$ g per bottle) of PBO was diluted with 50 ml acetone solution. One bottle was coated with one ml of PBO solution to be used as the synergist-exposure bottle. A second bottle was coated with one ml of acetone to serve as a synergist-control bottle. These were left to dry overnight. A subsample of 125 female *An. gambiae* s.l. were introduced into the synergist-exposure bottle for one hour. Another 125 female *An. gambiae* s.l. were introduced for one hour into the synergist-control bottle coated with acetone only.

After one hour, the mosquitoes were transferred to two holding cages—one for the synergist-control mosquitoes and another for the synergist-exposure mosquitoes. Four replicate tests were done for PBO and non-PBO, based on the CDC bioassays method, using eight bottles (four bottles for PBO and four bottles for non-PBO). In each insecticide-coated and control bottle, 25 females were introduced using a mouth aspirator, and mortality was recorded every 15 minutes, up to two hours.

CDC bioassay tests are discarded if control mortality was > 10%. Abbott's formula was used to correct results if the mortality in the control bottle was between 3% and 10%.

# 3. RESULTS AND DISCUSSION

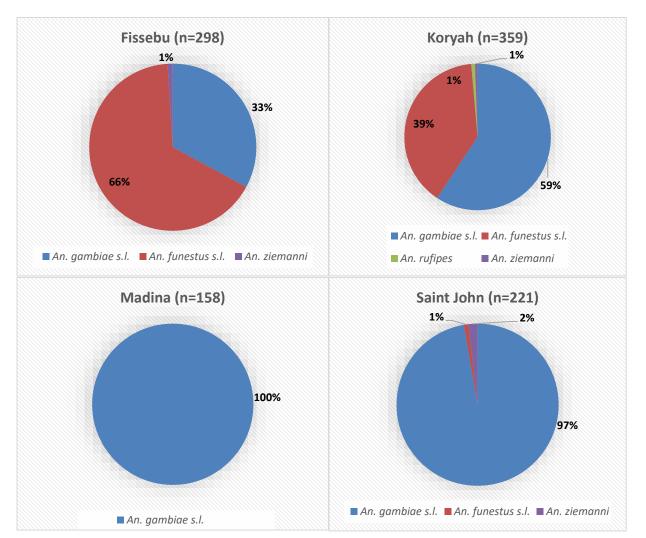
## 3.1 VECTOR BIONOMICS

Below are the results from PSC, HLC, and CDC-LT collections (mosquito collections were paused from April to July 2020 due to COVID-19). The team was not able to perform mosquito collections in Jackson Farm and Saint John in March 2020 due to COVID-19. Collections did not start in the additional ITN monitoring sites until January 2020, following the work plan approval in December 2019.

### 3.1.1 VECTOR ABUNDANCE AND SPECIES COMPOSITION

A total of 7,339 mosquitoes were collected using PSC, HLC, and CDC-LTs. Of this, 81% were *Anopheles* and the remaining 19% were *Culicine* mosquitoes (*Culex, Mansonia,* and *Aedes*). *Anopheles gambiae* s.l. was most dominant among the *Anopheles* mosquitoes collected: 87.1% *An. gambiae* s.l., 12.5% *An. funestus* s.l., 0.27% *An. ziemanni*, and less than 1% *An. rufipes* (Table 4). The high abundance of *Anopheles* mosquitoes in Gbedin, Suehn Town, and Jackson Farm is likely due to the presence of rice field breeding habitats in these rural areas (Table 4).

| Site            | An<br>gambiae s.l. |       | An<br>funestus<br>s.l. |      | An<br>Rufipes |     | An.<br>ziemanni |     | Total<br>Anopheles |       | Culex | Aedes | Mansonia |
|-----------------|--------------------|-------|------------------------|------|---------------|-----|-----------------|-----|--------------------|-------|-------|-------|----------|
|                 | n                  | (%)   | n                      | (%)  | n             | (%) | n               | (%) | N                  | (%)   |       |       |          |
| Fissebu         | 98                 | (33)  | 197                    | (66) | 0             | (0) | 3               | (1) | 298                | (5)   | 136   | 0     | 1        |
| Koryah          | 213                | (59)  | 141                    | (39) | 3             | (1) | 2               | (1) | 359                | (6)   | 300   | 0     | 23       |
| Madina          | 158                | (100) | 0                      | (0)  | 0             | (0) | 0               | (0) | 158                | (3)   | 439   | 0     | 1        |
| Saint John      | 215                | (97)  | 2                      | (1)  | 0             | (0) | 4               | (2) | 221                | (4)   | 109   | 0     | 0        |
| Gbedin          | 1,622              | (96)  | 59                     | (4)  | 0             | (0) | 1               | (0) | 1,682              | (28)  | 66    | 0     | 2        |
| Suehn Town      | 1,833              | (99)  | 23                     | (1)  | 0             | (0) | 2               | (0) | 1,858              | (31)  | 56    | 0     | 7        |
| Jackson<br>Farm | 887                | (99)  | 12                     | (1)  | 0             | (0) | 0               | (0) | 899                | (15)  | 109   | 0     | 0        |
| Zeanzue         | 131                | (30)  | 308                    | (70) | 0             | (0) | 4               | (1) | 443                | (7)   | 171   | 1     | 0        |
| Total           | 5,157              | (87)  | 742                    | (13) | 3             | (0) | 16              | (0) | 5,918              | (100) | 1,386 | 1     | 34       |


 TABLE 4: TOTAL MOSQUITOES COLLECTED FROM EIGHT SENTINEL SITES, OCTOBER 2019 – MARCH 2020

 AND AUGUST – SEPTEMBER 2020 (ALL COLLECTION METHODS)

Figure 2 below shows that while *An. gambiae* s.l. is the most abundant malaria vector in six out of the eight sentinel sites, *An. funestus* s.l. is predominant in two sites out of the eight sites (Zeanzue and Fissebu) and was also represented 39% of the *Anopheles* collected. These sites are observed to have water bodies, including swamps, known to be preferred for breeding by *An. funestus* s.l.

Anopheles funestus s.l. is known as one of the most efficient malaria vectors in Africa. However, very little is known about the contribution of *An. funestus* s.l. to malaria transmission in Liberia. The Liberia VectorLink project plans to characterize this vector through PCR identification to the species level, assess its infectivity and

susceptibility to insecticides. Information might be useful to understand its contribution to malaria transmission in the country and for planning its control.



#### FIGURE 2: SPECIES COMPOSITION OF ANOPHELES MOSQUITOES COLLECTED BY PSC, HLC AND CDC-LT FROM EIGHT SENTINEL SITES, OCT 2019 – MARCH 2020 AND AUGUST – SEPTEMBER 2020

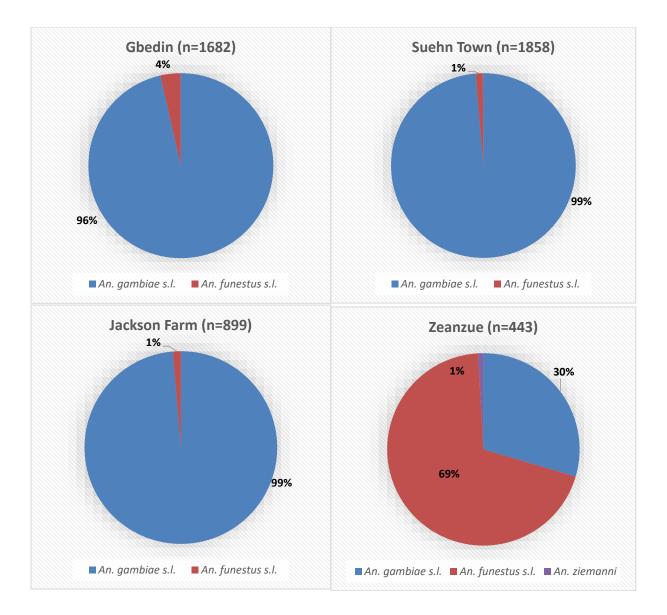



Table 5 below shows the total number of mosquitoes collected by method and site. The CDC-LT collections were only conducted indoors while the HLC was performed indoors and outdoors. Overall, the HLC method seems to be more productive for *An. gambiae* s.l. collection than the other methods.

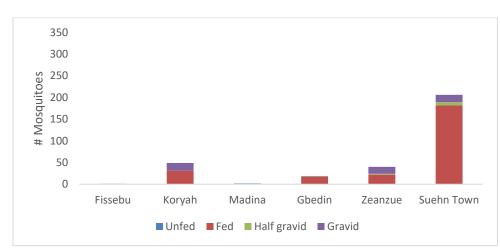
| Site     | Method | Aı<br>gambi |     |     | l <i>n.</i><br><i>tus</i> s.l. |   | n.<br>ïpes |    | A <i>n.</i><br>nanni | Cul   | ex  | A | edes | Man | sonia |
|----------|--------|-------------|-----|-----|--------------------------------|---|------------|----|----------------------|-------|-----|---|------|-----|-------|
|          |        | n           | %   | n   | %                              | n | %          | n  | %                    | n     | %   | n | %    | n   | %     |
|          | PSC    | 29          | 30  | 91  | 46                             | 0 | 0          | 0  | 0                    | 12    | 9   | 0 | 0    | 0   | 0     |
| Fissebu  | CDC-LT | 26          | 27  | 73  | 37                             | 0 | 0          | 3  | 100                  | 99    | 73  | 0 | 0    | 1   | 100   |
| Fissebu  | HLC    | 43          | 44  | 33  | 17                             | 0 | 0          | 0  | 0                    | 25    | 18  | 0 | 0    | 0   | 0     |
|          | Total  | 98          | 100 | 197 | 100                            | 0 | 0          | 3  | 100                  | 136   | 100 | 0 | 0    | 1   | 100   |
|          | PSC    | 107         | 50  | 68  | 48                             | 3 | 100        | 0  | 0                    | 13    | 4   | 0 | 0    | 0   | 0     |
| Komuh    | CDC-LT | 41          | 19  | 47  | 33                             | 0 | 0          | 1  | 50                   | 280   | 93  | 0 | 0    | 23  | 100   |
| Koryah   | HLC    | 65          | 31  | 26  | 18                             | 0 | 0          | 1  | 50                   | 7     | 2   | 0 | 0    | 0   | 0     |
|          | Total  | 213         | 100 | 141 | 100                            | 3 | 100        | 2  | 100                  | 300   | 100 | 0 | 0    | 23  | 100   |
|          | PSC    | 133         | 84  | 0   | 0                              | 0 | 0          | 0  | 0                    | 94    | 21  | 0 | 0    | 0   | 0     |
| Madina   | CDC-LT | 8           | 5   | 0   | 0                              | 0 | 0          | 0  | 0                    | 337   | 77  | 0 | 0    | 0   | 0     |
| wiadiila | HLC    | 17          | 11  | 0   | 0                              | 0 | 0          | 0  | 0                    | 8     | 2   | 0 | 0    | 1   | 100   |
|          | Total  | 158         | 100 | 0   | 0                              | 0 | 0          | 0  | 0                    | 439   | 100 | 0 | 0    | 1   | 100   |
|          | PSC    | 134         | 62  | 1   | 50                             | 0 | 0          | 0  | 0                    | 23    | 21  | 0 | 0    | 0   | 0     |
| Saint    | CDC-LT | 28          | 13  | 1   | 50                             | 0 | 0          | 4  | 100                  | 84    | 77  | 0 | 0    | 0   | 0     |
| John     | HLC    | 53          | 25  | 0   | 0                              | 0 | 0          | 0  | 0                    | 2     | 2   | 0 | 0    | 0   | 0     |
|          | Total  | 215         | 100 | 2   | 100                            | 0 | 0          | 4  | 100                  | 109   | 100 | 0 | 0    | 0   | 0     |
|          | PSC    | 531         | 33  | 6   | 10                             | 0 | 0          | 1  | 100                  | 32    | 48  | 0 | 0    | 0   | 0     |
| Gbedin   | CDC-LT | 613         | 38  | 15  | 25                             | 0 | 0          | 0  | 0                    | 28    | 42  | 0 | 0    | 0   | 0     |
| Gbedin   | HLC    | 478         | 29  | 38  | 64                             | 0 | 0          | 0  | 0                    | 6     | 9   | 0 | 0    | 2   | 100   |
|          | Total  | 1,622       | 100 | 59  | 100                            | 0 | 0          | 1  | 100                  | 66    | 100 | 0 | 0    | 2   | 100   |
|          | PSC    | 534         | 29  | 0   | 0                              | 0 | 0          | 0  | 0                    | 3     | 5   | 0 | 0    | 0   | 0     |
| Suehn    | CDC-LT | 175         | 10  | 22  | 96                             | 0 | 0          | 0  | 0                    | 21    | 38  | 0 | 0    | 0   | 0     |
| Town     | HLC    | 1,124       | 61  | 1   | 4                              | 0 | 0          | 2  | 100                  | 32    | 57  | 0 | 0    | 7   | 100   |
|          | Total  | 1,833       | 100 | 23  | 100                            | 0 | 0          | 2  | 100                  | 56    | 100 | 0 | 0    | 7   | 100   |
|          | PSC    | 420         | 47  | 2   | 17                             | 0 | 0          | 0  | 0                    | 2     | 2   | 0 | 0    | 0   | 0     |
| Jackson  | CDC-LT | 132         | 15  | 4   | 33                             | 0 | 0          | 0  | 0                    | 95    | 87  | 0 | 0    | 0   | 0     |
| Farm     | HLC    | 335         | 38  | 6   | 50                             | 0 | 0          | 0  | 0                    | 12    | 11  | 0 | 0    | 0   | 0     |
|          | Total  | 887         | 100 | 12  | 100                            | 0 | 0          | 0  | 0                    | 109   | 100 | 0 | 0    | 0   | 0     |
|          | PSC    | 92          | 70  | 170 | 55                             | 0 | 0          | 0  | 0                    | 11    | 6   | 0 | 0    | 0   | 0     |
| Zeanzue  | CDC-LT | 12          | 9   | 61  | 20                             | 0 | 0          | 0  | 0                    | 111   | 65  | 0 | 0    | 0   | 0     |
| Zeanzue  | HLC    | 27          | 21  | 77  | 25                             | 0 | 0          | 4  | 0                    | 49    | 29  | 1 | 100  | 0   | 0     |
|          | Total  | 131         | 100 | 308 | 100                            | 0 | 0          | 4  | 0                    | 171   | 100 | 1 | 100  | 0   | 0     |
|          | PSC    | 1,980       | 38  | 338 | 46                             | 3 | 100        | 1  | 6.3                  | 190   | 14  | 0 | 0    | 0   | 0     |
| Total    | CDC-LT | 1,035       | 20  | 223 | 30                             | 0 | 0          | 8  | 50                   | 1,055 | 76  | 0 | 0    | 24  | 71    |
| 10141    | HLC    | 2,142       | 42  | 181 | 24                             | 0 | 0          | 7  | 44                   | 141   | 10  | 1 | 100  | 10  | 29    |
|          | Total  | 5,157       | 100 | 742 | 100                            | 3 | 100        | 16 | 100                  | 1,386 | 100 | 1 | 100  | 34  | 100   |

## TABLE 5: ANOPHELES AND OTHER MOSQUITOES SPECIES COLLECTED IN EIGHTSENTINEL SITES, OCTOBER 2019 - MARCH 2020 AND AUGUST – SEPTEMBER 2020.

### 3.1.2 INDOOR RESTING DENSITY

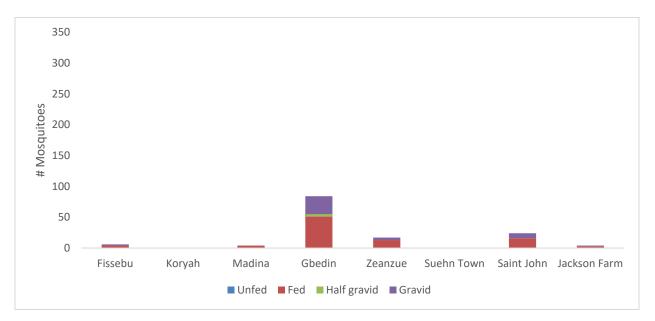
Indoor resting densities were high in Gbedin (13.6 mosquitoes per house per day) in September, Suehn Town (10.2 mosquitoes per house per day) in March, followed by Jackson Farm (8.8 mosquitoes per house per day) in February. These sites are all rice-growing areas where the densities are comparatively higher than the other sites where mosquitoes per house per day is between 0 and 2 in Fissebu, Koryah, and Saint John. (Table 6).

|            | (                         | Original Mo | nitoring Sites | ;             |        | ITN Monitoring Sites |              |         |  |  |  |  |
|------------|---------------------------|-------------|----------------|---------------|--------|----------------------|--------------|---------|--|--|--|--|
| Year-Month | Numbers per House per Day |             |                |               |        |                      |              |         |  |  |  |  |
|            | Fissebu                   | Koryah      | Madina         | Saint<br>John | Gbedin | Suehn<br>Town        | Jackson Farm | Zeanzue |  |  |  |  |
| 19-Oct     | 0.12                      | 0.2         | 0.36           | 1.56          | NA     | NA                   | NA           | NA      |  |  |  |  |
| 19-Nov     | 0                         | 0.08        | 0.28           | 0.24          | NA     | NA                   | NA           | NA      |  |  |  |  |
| 19-Dec     | 0                         | 0.16        | 0.24           | 0.2           | NA     | NA                   | NA           | NA      |  |  |  |  |
| 20-Jan     | 0                         | 0.2         | 0.08           | 0.24          | 2.2    | 10.16                | 7.84         | 0.36    |  |  |  |  |
| 20-Feb     | 0                         | 0.64        | 0              | 0.24          | 1.28   | 2.8                  | 8.8          | 0.56    |  |  |  |  |
| 20-Mar     | 0.04                      | 1.96        | 0.08           | NA            | 0.76   | 8.24                 | NA           | 1.6     |  |  |  |  |
| 20-Aug     | 0.24                      | 0           | 0.16           | 0.96          | 3.36   | 0                    | 0.16         | 0.68    |  |  |  |  |
| 20-Sep     | 0.76                      | 1.04        | 4.12           | 1.92          | 13.64  | 0.16                 | 0            | 0.48    |  |  |  |  |


## TABLE 6: INDOOR DENSITIES OF AN. GAMBIAE S.L. COLLECTED BY PSC, OCTOBER2019-MARCH 2020 AND AUGUST-SEPTEMBER 2020.

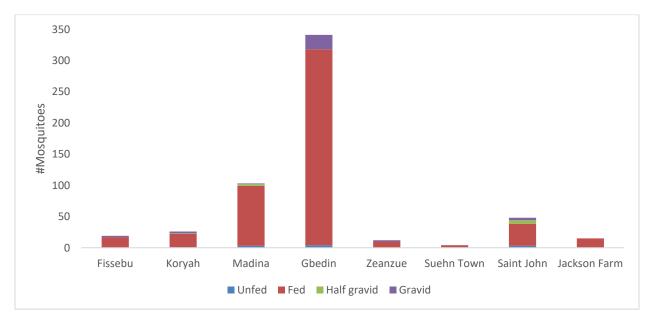
NA: collection was delayed in these sites for three months due to workplan approval process.

### 3.1.3 ABDOMINAL STAGE


High proportions of fresh blood-fed *An. gambiae* s.l. were collected from all sites, indicating that a considerable number of the vectors were able to bite humans or animals. During this reporting period, no test was performed to determine the source of the blood. This will be conducted at LIBR upon training. However, as the mosquitoes were collected from sleeping rooms using PSC, it is highly likely they had fed on humans. More blood-fed females in the collections could mean there was more human-vector contact and potential exposure to malaria transmission despite the ITN distribution. As these mosquitoes were collected resting inside sleeping rooms, the high number of fed mosquitoes could mean they are still getting access to bite people despite the expectations that people would use their nets and get protected from bites. Most of *An. gambiae* s.l. mosquitoes collected in March 2020 using PSC were blood-fed; in Suehn Town where vector indoor resting density is high (Figure 3).

The number of mosquitoes collected from Suehn Town in August dropped to zero due to the frequent rains which affected the larval sources. More mosquitoes were collected in August from Gbedin where breeding sites are mainly rice fields (Figure 4).




## FIGURE 3: DISTRIBUTION OF AN. GAMBIAE S.L. MOSQUITOES BY ABDOMINAL STAGE, COLLECTED BY PSC IN SIX SITES, MARCH 2020

In March 2020, due to travel restrictions, the team was not able to perform collections in Saint John and Jackson Farm.



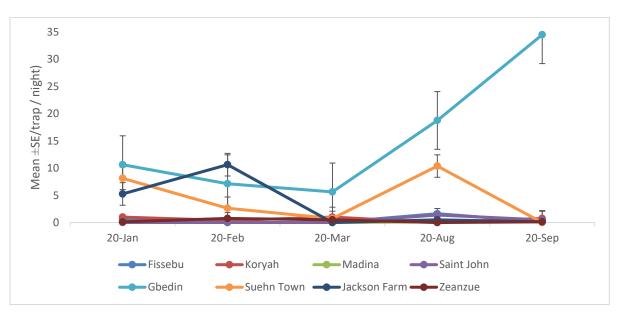
#### FIGURE 4: DISTRIBUTION OF AN. GAMBIAE S.L. MOSQUITOES BY ABDOMINAL STAGE, COLLECTED BY PSC IN EIGHT SITES, AUGUST 2020

#### FIGURE 5: DISTRIBUTION OF AN. GAMBIAE S.L. MOSQUITOES BY ABDOMINAL STAGE, COLLECTED BY PSC IN EIGHT SITES, SEPTEMBER 2020



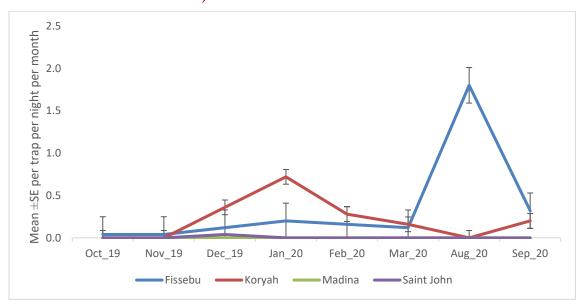
## 3.1.4 CDC LIGHT TRAP COLLECTIONS

A total of 1,023 *An. gambiae* s.l. mosquitoes were collected indoors by CDC LT during the reporting period (Table 7).

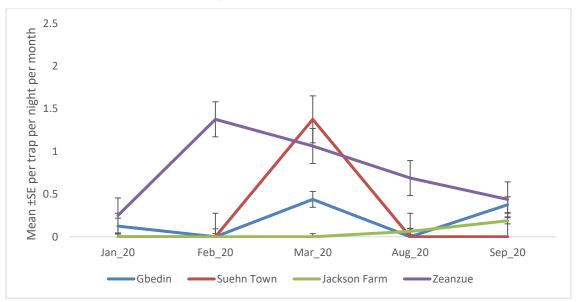

|              | Ori     | ginal Mor | nitoring Site | es            |        | Total         |                 |         |       |
|--------------|---------|-----------|---------------|---------------|--------|---------------|-----------------|---------|-------|
| Month-Year   | Fissebu | Koryah    | Madina        | Saint<br>John | Gbedin | Suehn<br>Town | Jackson<br>Farm | Zeanzue |       |
| October-19   | 0       | 1         | 0             | 8             | NA     | NA            | NA              | NA      | 9     |
| November-19  | 1       | 1         | 0             | 0             | NA     | NA            | NA              | NA      | 2     |
| December-19  | 4       | 10        | 1             | 1             | NA     | NA            | NA              | NA      | 16    |
| January-20   | 5       | 8         | 1             | 0             | 85     | 65            | 42              | 1       | 207   |
| February-20  | 0       | 3         | 0             | 0             | 57     | 21            | 85              | 6       | 172   |
| March-20     | 0       | 8         | 0             | NA            | 45     | 6             | NA              | 4       | 63    |
| August-20    | 13      | 0         | 1             | 11            | 150    | 83            | 4               | 0       | 262   |
| September-20 | 1       | 6         | 3             | 4             | 276    | 0             | 1               | 1       | 292   |
| Total        | 24      | 37        | 6             | 24            | 613    | 175           | 132             | 12      | 1,023 |

## TABLE 7: AN. GAMBIAE S.L. COLLECTED BY CDC LT, INDOOR, OCTOBER 2019–MARCH2020 AND AUGUST - SEPTEMBER 2020

NA: The monthly entomological monitoring was not performed due to the travel restriction decided by health authorities in March. These sites were the last sites to be sampled in March 2020.


When looking at data across the eight sites collected from January to September 2020, the highest density was observed in Gbedin followed by Suehn Town and Jackson Farm (Figure 6). The mosquito population peaked in September for Gbedin, August for Suehn Town, and February for Jackson Farm.

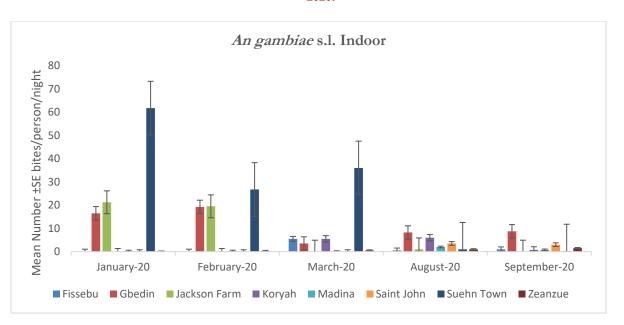
#### FIGURE 6: MEAN DENSITIES PER TRAP PER NIGHT OF AN. GAMBIAE S.L. SAMPLES COLLECTED BY CDC LT, INDOOR, OCTOBER 2019–MARCH 2020 AND AUGUST-SEPTEMBER 2020.

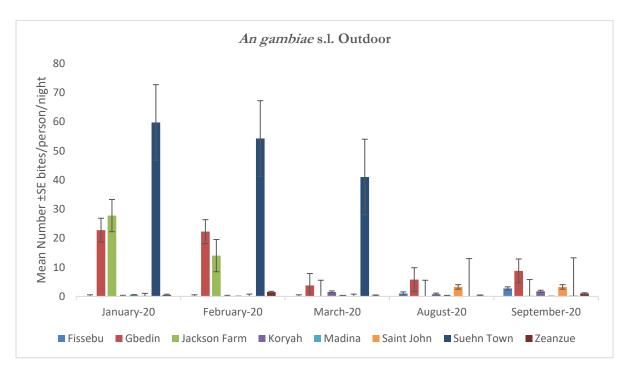



Using CDC LTs, the highest number of *An. funestus* s.l. mosquitoes were collected from Fissebu in August (1.8 females per trap per night) (Figure 7). *An. funestus* s.l was collected at all sites, except Madina. No clear trend in seasonal population variability could be presented because of the four months interruption of collections due to COVID-19 restrictions and a low number of mosquitoes collected. There are also only four months of data for the newly added sites. However, it seems that even in sites where *An. funsestus* s.l is dominant over *An. gambiae* s.l. (Zeanzue and Fissebu) the numbers collected per trap were still low.

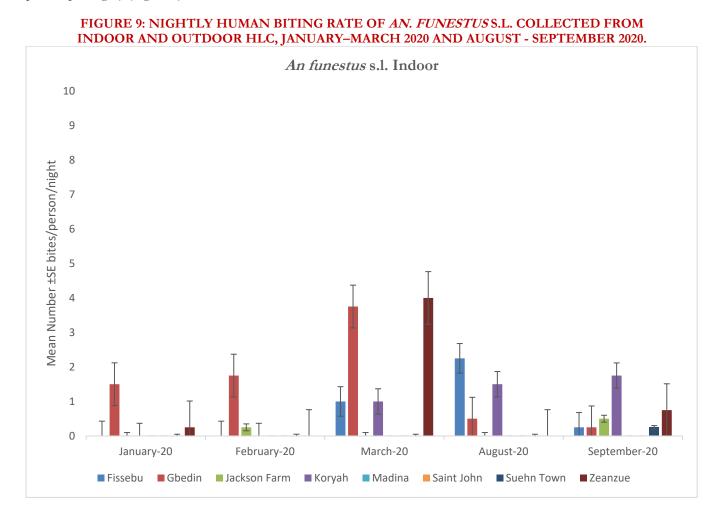
#### FIGURE 7: ANOPHELES FUNESTUS S.L NUMBERS COLLECTED BY CDC-LT INDOORS, PER TRAP PER NIGHT, OCTOBER 2019–MARCH 2020 AND AUGUST – SEPTEMBER 2020. A) ORIGINAL MONITORING SITES




**B) ITN MONITORING SITES** 



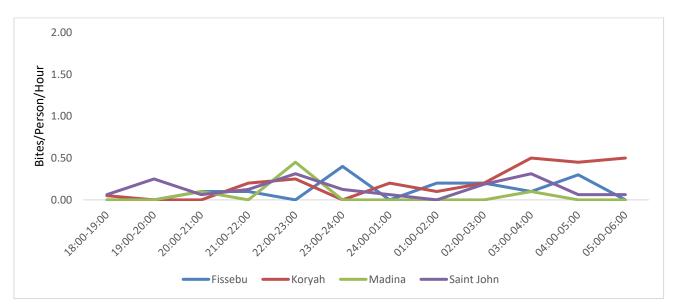

#### 3.1.5 HUMAN BITING RATE AND PATTERN


The highest indoor and outdoor biting rate of *An. gambiae* s.l. was observed in Suehn Town in January 2020 at 61.8 bites per person per night and 59.8 bites per person per night, respectively (Figure 8). HLC collections did not start until January 2020 in all sites, following approval of the work plan in December 2019.


#### FIGURE 8: NIGHTLY HUMAN BITING RATE OF AN. GAMBIAE S.L. COLLECTED FROM INDOOR AND OUTDOOR HLC, JANUARY – MARCH 2020 AND AUGUST - SEPTEMBER 2020.

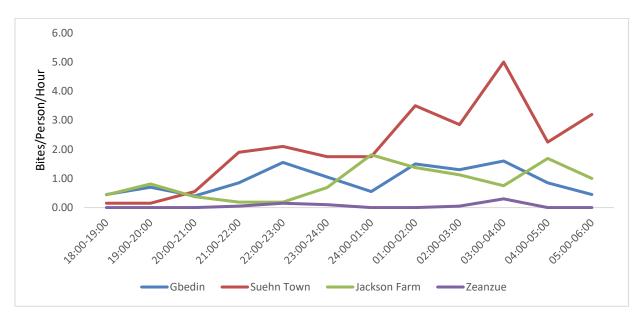





The biting rate by *An. funestus* s.l. was overall lower than *An. gambiae* s.l. with the highest indoor biting rates occurring at Zeanzue and Gbedin in March 2020 (4.0 and 3.8 bites per person per night, respectively) and the highest outdoor biting rates at Zeanzue site in September 2019 and March 2020 (5.8 bites and 7.5 bites per person per night) (Figure 9).

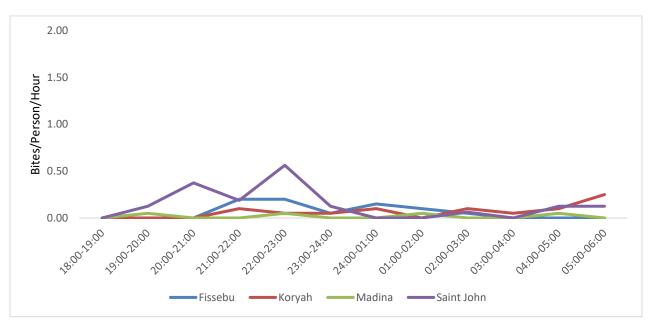





The hourly rates in those sites with data collection from January 2020 are less than 1.0 bites per person per hour (Figure 10). There is no clear trend in hourly biting activity except some minor peaks at 11:00 PM to 12:00 AM as well as toward early morning (5:00 AM to 6:00 AM).

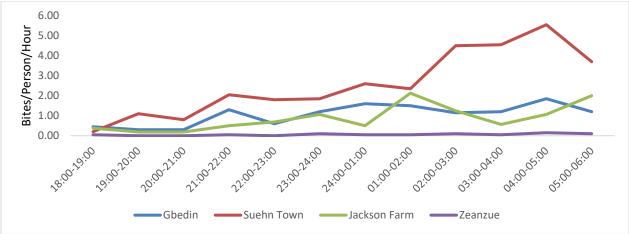
#### FIGURE 10: HOURLY HUMAN BITING RATE OF *AN. GAMBIAE* S.L. COLLECTED FROM INDOOR HLC IN ORIGINAL MONITORING SITES, JANUARY –MARCH 2020 AND AUGUST - SEPTEMBER 2020.




In the sites added in January 2020, the hourly indoor biting rate for *An. gambiae* s.l. was higher in Suehn Town than in the other sites. The biting activity started to peak after 9:00 PM and was higher towards the end of the night (5:00 AM to 6:00 AM). The biting rate was low in Zeanzue (Figure 11).

#### FIGURE 11: HOURLY HUMAN BITING RATE OF *AN. GAMBIAE* S.L. COLLECTED FROM INDOOR HLC IN FOUR ITN MONITORING SITES, JANUARY – MARCH 2020 AND AUGUST - SEPTEMBER 2020.




Similar to the indoor biting hourly rates across the four sites with collections reported from January 2020, the outdoor hourly rates are less than 1 bites per person per hour (Figure 12). There is no clear trend in hourly biting activity except a minor peak at Saint John around 11:00 PM.

#### FIGURE 12: HOURLY HUMAN BITING RATE OF AN. GAMBIAE S.L. COLLECTED FROM OUTDOOR HLC IN ORIGINAL MONITORING SITES, JANUARY – MARCH 2020 AND AUGUST - SEPTEMBER 2020.



In the sites added January 2020, the hourly outdoor biting rate for *An. gambiae* s.l. was highest in Suehn Town (Figure 13). Biting activity at this site started to peak after 7:00 PM, progressively increasing throughout the night, and was distinctly higher towards the end of the night, after 2:00 AM. The biting rate was relatively low and flat in the other three sites, so no clear trend in hourly biting could be observed.



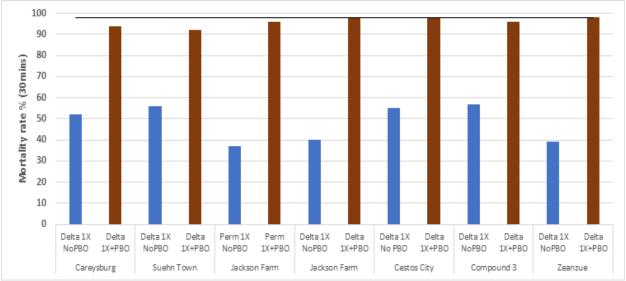


## **3.2** INSECTICIDE RESISTANCE MONITORING

### 3.2.1 INSECTICIDE SUSCEPTIBILITY TEST FOR PYRETHROIDS

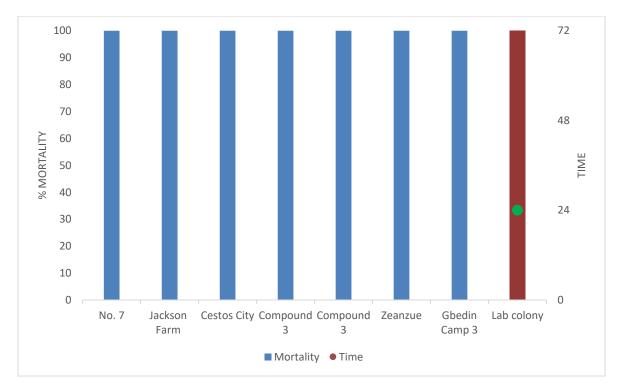
The data collected in Year 2 showed that *An. gambiae* s.l. populations were resistant to all doses of pyrethroids (1x, 2x, 5x, and 10x the diagnostic dose) after 30 minutes of exposure. In Year 3, only 1x the diagnostic dose

of deltamethrin and permethrin was tested in seven sites. The vector was resistant to deltamethrin and permethrin, mortality rates ranging between 37 and 57% across all sites (Figure 14).


### 3.2.2 INSECTICIDE SUSCEPTIBILITY TESTING OF CHLORFENAPYR

Chlorfenapyr is an insecticide with a slow mechanism of action used in combination with alpha-cypermethrin in the Interceptor® G2 ITNs. It was tested based on larvae availability and was conducted in fewer sites than planned due to the travel restriction related to COVID-19.

An. gambiae s.l. populations tested at the seven sites were susceptible to chlorfenapyr (Figure 15). In Jackson Farm and Zeanzue, 100% percent mortality was observed by 24 hours post-exposure (Figure 15), which corresponds to the mortality of lab colony mosquitoes tested using chlorfenapyr. Two sites – Gbedin and Compound 3 (first test) did not reach 100% mortality until 72 hours. However, the second test at Compound 3, reached 100% mortality at 48 hours.


### 3.2.3 SYNERGIST ASSAYS - CDC BOTTLE ASSAY METHOD

In Year 3, deltamethrin and permethrin with or without PBO was tested in seven sites. Consistent with historic data, VectorLink observed an increase in the mortality rate among mosquitoes pre-exposed to PBO before being tested with deltamethrin and permethrin. However, the PBO did not restore full susceptibility to pyrethroids at the 30 minutes diagnostic time (Figure 14). It seems that mechanisms of resistance other than oxidases may be involved in the high phenotypic resistance to pyrethroids observed in Liberia. There are ongoing efforts in collaboration with CDC Atlanta to build molecular diagnostic capacity at LIBR to further identify possible mechanisms of resistance.



#### FIGURE 14: PERCENTAGE MORTALITY OF *AN. GAMBIAE* S.L. FROM DIFFERENT SITES IN LIBERIA EXPOSED TO 1X DELTAMETHRIN DIAGNOSTIC DOSE AND TO PBO USING CDC BOTTLE ASSAYS, FEBRUARY– SEPTEMBER 2020

Note: Solid black line indicates 98% cut-off point for susceptibility



## FIGURE 15: MORTALITY RATE OF *AN. GAMBIAE* S.L. PER EXPOSURE TO CHLORFENAPYR USING CDC BOTTLE ASSAY

\*Red line indicates time (hours) after exposure it to attain 100% mortality, by site.

\*\*Lab colony is a susceptible strain of *An. Coluzzii*.

## TABLE 8: MORTALITY RATE OF AN. GAMBIAE S.L. PER EXPOSURE TO CHLORFENAPYRUSING CDC BOTTLE ASSAY AND TIME POST EXPOSURE

| County       | Site          | Number<br>tested | Mortality after<br>24hours (%) | Mortality after<br>48hours (%) | Mortality after<br>72hours (%) | Month       |
|--------------|---------------|------------------|--------------------------------|--------------------------------|--------------------------------|-------------|
| Monteserrado | Number 7      | 80               | 76.25                          | 100                            |                                | February    |
| Margibi      | Jackson Farm  | 80               | 100                            |                                |                                | March/April |
| River Cess   | Cestos City   | 80               | 92.50                          | 100                            |                                | June        |
| Grand Bassa  | Compound 3    | 160              | 76.25                          | 96.25                          | 100                            | July        |
| Grand Bassa  | Compound 3    | 160              | 87.5                           | 100                            |                                | July        |
| Bong         | Zeanzue Town  | 160              | 100                            |                                |                                | September   |
| Nimba        | Gbedin Camp 3 | 160              | 76                             | 99.4                           | 100                            | September   |
|              | Lab colony    | 80               | 100                            |                                |                                | July        |

## **3.3** LABORATORY ANALYSES

Laboratory analysis activities are being conducted by LIBR staff. Due to COVID-19, these analysis activities are delayed as LIBR staff had to focus on processing COVID-19 samples. In July 2020, the LIBR staff were able to resume focus on mosquito sample processing, which is currently ongoing at LIBR. Year 3 samples are expected to be processed by May 2021. A new ELISA reader purchased in May 2020 by PMI is being used by LIBR staff for the project sample processing. In Year 3, VectorLink planned to conduct a PCR training with LIBR staff, but due to COVID-19, the training has been pushed to Year 4.

## 3.4 COVID-19 PREVENTION MEASURES

One of the main challenges this year was the suspension of activities due to COVID-19 and subsequent resumption of activities under strict COVID-19 prevention protocols. Per PMI's guidance, VectorLink and NMCP worked to identify measures for COVID-19 mitigation. For instance, instead of disinfecting the bedsheets for each PSC, additional bedsheets were purchased to avoid using the same set of bedsheets in different houses. For HLC, instead of using the mouth aspirators, the CHWs were provided with 5ml glass tubes to catch mosquitoes landing on their legs. All CHWs and VectorLink staff wore N95 masks and used hand sanitizer while performing entomological activities. In all the sites where the team was working, there were no reported COVID-19 cases. VectorLink resumed activities in August 2020 at all sites without any incident.

### 3.5 CAPACITY BUILDING ACTIVITIES

VectorLink worked to build the capacity of the NMCP, CHWs, and UL staff through training and on-site practical experience (Table 9). VectorLink, UL, and the NMCP led training on the basic morphology of adult and larval mosquitoes for the four CHWs and two supervisors at each site. In February, VectorLink trained NMCP staff on new data collection forms and VectorLink SOPs for entomological monitoring. In July, VectorLink provided remote training to the NMCP staff on ITN durability monitoring. In August, the same NMCP staff were involved in the supervision of the 24-month ITN durability monitoring survey (held at 29 months due to COVID-19 associated delays) of ITNs in Lofa and Grand Gedeh counties. NMCP staff were trained on ITN durability monitoring bioassays conducted in-country this year. VectorLink Liberia supported NMCP to build capacity which included training of NMCP and UL staff on vector monitoring and insecticide resistance assays performed respectively in sentinel sites and selected counties.

| Numbers Trained                                                       |            |      |             |            |       |  |  |  |  |  |
|-----------------------------------------------------------------------|------------|------|-------------|------------|-------|--|--|--|--|--|
|                                                                       | University |      |             |            |       |  |  |  |  |  |
| Activity                                                              | NMCP       | CHWs | Supervisors | of Liberia | Total |  |  |  |  |  |
| Insecticide resistance testing                                        | 4          | 28   |             |            | 32    |  |  |  |  |  |
| Adult and larval mosquito<br>collection methods refresher<br>training | 2          | 32   | 16          | 1          | 51    |  |  |  |  |  |
| Field morphological ID                                                | 4          | 32   | 16          | 1          | 51    |  |  |  |  |  |
| ITN durability monitoring bioassay training                           | 2          |      |             |            | 2     |  |  |  |  |  |

#### TABLE 9: SUMMARY OF CAPACITY BUILDING ACTIVITIES

Due to COVID-19-, all international training sessions were canceled. One NMCP staff attended November 2019 ASTMH in Washington, DC.

## 4. OBSERVATIONS AND CONCLUSIONS

Overall, identification of entomological and seasonal trends in the sentinel sites was challenging due to the intermittent collection periods resulting from COVID-19 travel restrictions. However, the data collected shows several patterns that reflect vector abundance, e.g., higher mosquito abundance in the rice-growing sites like Suehn Town, Gbedin, and Jackson Farm than in other sites.

Anopheles gambiae s.l. was the main vector at all sites except Fissebu and Zeanzue where An. funestus s.l. was found in higher densities. Sites like Gbedin, Jackson Farm and Suehn Town are typical remote villages with higher vector densities. As Madina displayed low density, it may not be the best option for entomological monitoring regarding the monitoring of the Interceptor® G2 ITNs.

The tests performed on *An. gambiae* s.l. populations in the seven sites revealed that *An. gambiae* s.l. was highly resistant to pyrethroids (deltamethrin and permethrin). Among mosquitoes not pre-exposed to PBO, the mortality ranged between 37% to 57%. The pre-exposure of mosquitoes to PBO increased deltamethrin susceptibility to 98% in three out of the six sites tested and to 92 to 96% in other sites indicating that the enzymatic mechanism involving monooxygenase is likely involved. More investigation is needed on the molecular resistance mechanisms.

Four sites were added in Year 3 to expand entomological monitoring for baseline data collection before Interceptor® G2 ITN distribution planned for May 2021. It is recommended only those sites with higher mosquito density continue to be monitored into Year 4 (Jackson Farm, Suehn Town, Gbedin, and Zeanzue). An assessment of the entomological indicators in these sites will help evaluate the variations of vector density as well as sporozoite rate changes in the lifetime of the ITNs. Bioassay results confirmed that chlorfenapyr is effective against *An. gambiae* s.l. and supports the decision to distribute Interceptor® G2 ITNs treated with chlorfenapyr and alpha-cypermethrin for the 2021 mass campaign.

Overall, hourly biting behavior showed an increase of activity after midnight. Biting rates were higher during the second part of the night (12:00 AM to 5:00 AM). The outdoor biting rate was higher than the indoor biting rate at all sites. Due to the interruption of collections for COVID-19 precaution, the data is not complete to show seasonal trends. However, the ongoing monthly collection will allow a better assessment of seasonal variation in the biting rate.

The lab analysis using ELISA-CSP for sporozoite rate assessment is ongoing at LIBR with priority to the processing of backlog samples. PCR training will be held in Year 4 which will allow LIBR to process samples for blood meal origin, species identification, and identification of mechanisms of insecticide resistance.

The high proportion of blood-fed mosquitoes from sleeping rooms may indicate frequent contact between host and vector probably due to inconsistent use of ITNs used by communities. The NMCP/SBC team should

scale up communication efforts for behavior change to improve ITNs use in rural communities, and this could be addressed by more engagement of the community health workers.

## 5. REFERENCES

- Braack L, Gouveia de Almeida AP, Cornel AJ, Swanepoel R, de Jager C. Mosquito-borne arboviruses of African origin: review of key viruses and vectors. *Parasite Vectors*. 2018; 11(1):29. Published 2018 Jan 9. doi:10.1186/s13071-017-2559-9
- Coetzee, M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar J 19, 70 (2020). <u>https://doi.org/10.1186/s12936-020-3144-9</u> National Malaria Control Program (NMCP) [Liberia], Ministry of Health (MOH), Liberia Institute of Statistics and Geo-Information Services (LISGIS), and ICF. 2017. Liberia Malaria Indicator Survey 2016. Monrovia, Liberia: MOH, LISGIS, and ICF.
- 3. <u>https://malariaworld.org/blog/ivcc-and-syngenta-reach-key-milestone-development-new-insecticide-malaria-mosquito-control</u> (accessed January 6, 2017).
- Stojanovich CJ and Scott HG. 1966. Illustrated Key to Anopheles Mosquitoes of Liberia. Atlanta, Georgia: U.S Department of Health, Education, and Welfare, Public Health Science. Communicable Disease Center.
- 5. Gillett, JD. Common African Mosquitoes and Their Medical Importance, with 48 Colour Illustrations. London: William Heinemann Medical Books Ltd.
- 6. World Health Organization. 2013. *Test procedures for insecticide resistance monitoring in malaria vector mosquitoes*. http://www.who.int/malaria: December 31, 2019.

## 6. ANNEXES

# ANNEX 1: ANOPHELES GAMBIAE S.L. COLLECTED BY PSC, OCTOBER 2019 – MARCH 2020 AND AUGUST-SEPTEMBER 2020

|              |         | Original m | onitoring site | es         |        | ITN mor       | nitoring sites  | 3       |       |
|--------------|---------|------------|----------------|------------|--------|---------------|-----------------|---------|-------|
| Month-Year   | Fissebu | Koryah     | Madina         | Saint John | Gbedin | Suehn<br>Town | Jackson<br>Farm | Zeanzue | Total |
| October-19   | 3       | 5          | 9              | 39         | NA     | NA            | NA              | NA      | 56    |
| November-19  | 0       | 2          | 7              | 6          | NA     | NA            | NA              | NA      | 15    |
| December-19  | 0       | 4          | 6              | 5          | NA     | NA            | NA              | NA      | 15    |
| January-20   | 0       | 5          | 2              | 6          | 55     | 254           | 196             | 9       | 527   |
| February-20  | 0       | 16         | 0              | 6          | 32     | 70            | 220             | 14      | 358   |
| March-20     | 1       | 49         | 2              | NA*        | 19     | 206           | NA*             | 40      | 317   |
| August-20    | 6       | 0          | 4              | 24         | 84     | 0             | 4               | 17      | 139   |
| September-20 | 19      | 26         | 103            | 48         | 341    | 4             | 0               | 12      | 553   |
| Total        | 29      | 107        | 133            | 134        | 531    | 534           | 420             | 92      | 1,980 |

# ANNEX 2: ANOPHELES FUNESTUS S.L. COLLECTED BY PSC, OCTOBER 2019–MARCH 2020

|             |         | Original n | nonitoring | sites      | ITN monitoring sites |                 |               |         |     |  |
|-------------|---------|------------|------------|------------|----------------------|-----------------|---------------|---------|-----|--|
| Month-Year  | Fissebu | Koryah     | Madina     | Saint John | Gbedin               | Jackson<br>Farm | Suehn<br>Town | Zeanzue |     |  |
| October-19  | 22      | 4          | 0          | 0          | NA                   | NA              | NA            | NA      | 26  |  |
| November-19 | 30      | 1          | 0          | 0          | NA                   | NA              | NA            | NA      | 31  |  |
| December-19 | 12      | 2          | 0          | 1          | NA                   | NA              | NA            | NA      | 15  |  |
| January-20  | 7       | 45         | 0          | 0          | 4                    | 0               | 0             | 26      | 82  |  |
| February-20 | 10      | 8          | 0          | 0          | 1                    | 0               | 0             | 56      | 75  |  |
| March-20    | 10      | 8          | 0          | NA*        | 1                    | NA*             | 2             | 88      | 109 |  |
| Total       | 91      | 68         | 0          | 1          | 6                    | 0               | 2             | 170     | 338 |  |

NA= Collections were delayed in these four sites selection in 2019 due workplan approval delay.

NA\*= Pause of activities March-July 2020 due to COVID-19.

## ANNEX 3: ANOPHELES GAMBIAE S.L. COLLECTED BY CDC LT, INDOOR, OCTOBER 2019–MARCH 2020 AND AUGUST-SEPTEMBER 2020

|              | 0       | riginal mon | itoring sites |               | ITN monitoring sites |               |                 |         |       |  |
|--------------|---------|-------------|---------------|---------------|----------------------|---------------|-----------------|---------|-------|--|
| Month-Year   | Fissebu | Koryah      | Madina        | Saint<br>John | Gbedin               | Suehn<br>Town | Jackson<br>Farm | Zeanzue |       |  |
| October-19   | 0       | 1           | 0             | 8             | NA                   | NA            | NA              | NA      | 9     |  |
| November-19  | 1       | 1           | 0             | 0             | NA                   | NA            | NA              | NA      | 2     |  |
| December-19  | 4       | 10          | 1             | 1             | NA                   | NA            | NA              | NA      | 16    |  |
| January-20   | 5       | 8           | 1             | 0             | 85                   | 65            | 42              | 1       | 207   |  |
| February-20  | 0       | 3           | 0             | 0             | 57                   | 21            | 85              | 6       | 172   |  |
| March-20     | 0       | 8           | 0             | NA            | 45                   | 6             | NA              | 4       | 63    |  |
| August-20    | 13      | 0           | 1             | 11            | 150                  | 83            | 4               | 0       | 262   |  |
| September-20 | 1       | 6           | 3             | 4             | 276                  | 0             | 1               | 1       | 292   |  |
| Total        | 24      | 37          | 6             | 24            | 613                  | 175           | 132             | 12      | 1,023 |  |

ANNEX 4: ANOPHELES FUNESTUS S.L. COLLECTED BY CDC LT, INDOOR, OCTOBER 2019–MARCH 2020 AND AUGUST - SEPTEMBER 2020

|              | 0       | riginal mo | nitoring site | S             | ITN monitoring sites |       |                 |         |       |  |
|--------------|---------|------------|---------------|---------------|----------------------|-------|-----------------|---------|-------|--|
| Month        | Fissebu | Koryah     | Madina        | Saint<br>John | Gbedin               | Suehn | Jackson<br>Farm | Zeanzue | Total |  |
| October-19   | 1       | 0          | 0             | 0             | NA                   | NA    | NA              | NA      | 1     |  |
| November-19  | 1       | 0          | 0             | 0             | NA                   | NA    | NA              | NA      | 1     |  |
| December-19  | 3       | 9          | 0             | 1             | NA                   | NA    | NA              | NA      | 13    |  |
| January-20   | 5       | 18         | 0             | 0             | 2                    | 0     | 0               | 4       | 29    |  |
| February-20  | 4       | 7          | 0             | 0             | 0                    | 0     | 0               | 22      | 33    |  |
| March-20     | 3       | 4          | 0             | NA            | 7                    | 22    | NA              | 17      | 53    |  |
| August-20    | 45      | 0          | 0             | 0             | 0                    | 0     | 1               | 11      | 57    |  |
| September-20 | 8       | 5          | 0             | 0             | 6                    | 0     | 3               | 7       | 29    |  |
| Total        | 70      | 43         | 0             | 1             | 15                   | 22    | 4               | 61      | 216   |  |

# ANNEX 5: ANOPHELES GAMBIAE S.L. COLLECTED BY HLC, INDOOR, JANUARY–MARCH 2020 AND AUGUST - SEPTEMBER 2020

| Month        | Fissebu | Gbedin | Jackson<br>Farm | Koryah | Madina | Saint John | Suehn Town | Zeanzue | Total |
|--------------|---------|--------|-----------------|--------|--------|------------|------------|---------|-------|
| January_20   | 0       | 66     | 85              | 0      | 1      | 0          | 247        | 0       | 399   |
| February_20  | 0       | 77     | 78              | 0      | 1      | 0          | 107        | 1       | 264   |
| March_20     | 22      | 14     | NA              | 22     | 0      | NA         | 144        | 2       | 204   |
| August_20    | 2       | 33     | 4               | 24     | 8      | 14         | 4          | 4       | 93    |
| September_20 | 4       | 35     | 0               | 3      | 3      | 12         | 1          | 6       | 64    |

| Total | 28 | 225 | 167 | 49 | 13 | 26 | 503 | 13 | 1024 |
|-------|----|-----|-----|----|----|----|-----|----|------|
|       |    |     |     |    |    |    |     |    |      |

# ANNEX 6: ANOPHELES GAMBIAE S.L. COLLECTED BY HLC, OUTDOOR, JANUARY–MARCH 2020 AND AUGUST - SEPTEMBER 2020

| Month        | Fissebu | Gbedin | Jackson<br>Farm | Koryah | Madina | Saint<br>John | Suehn Town | Zeanzue | Total |
|--------------|---------|--------|-----------------|--------|--------|---------------|------------|---------|-------|
| January_20   | 0       | 91     | 111             | 0      | 2      | 1             | 239        | 2       | 446   |
| February_20  | 0       | 89     | 56              | 0      | 0      | 0             | 217        | 6       | 368   |
| March_20     | 0       | 15     | NA              | 6      | 1      | NA            | 164        | 1       | 187   |
| August_20    | 4       | 23     | 0               | 3      | 1      | 13            | 0          | 1       | 45    |
| September_20 | 11      | 35     | 1               | 7      | 0      | 13            | 1          | 4       | 72    |
| Total        | 15      | 253    | 168             | 16     | 4      | 27            | 621        | 14      | 1118  |

# ANNEX 7: ANOPHELES FUNESTUS S.L. COLLECTED BY HLC, INDOOR, JANUARY–MARCH 2020 AND AUGUST - SEPTEMBER 2020

| Month        | Fissebu | Gbedin | Jackson<br>Farm | Koryah | Madina | Saint John | Suehn<br>Town | Zeanzue | Total |
|--------------|---------|--------|-----------------|--------|--------|------------|---------------|---------|-------|
| January_20   | 0       | 6      | 0               | 0      | 0      | 0          | 0             | 1       | 7     |
| February_20  | 0       | 7      | 1               | 0      | 0      | 0          | 0             | 0       | 8     |
| March_20     | 4       | 15     | NA              | 4      | 0      | NA         | 0             | 16      | 39    |
| August_20    | 9       | 2      | 0               | 6      | 0      | 0          | 0             | 0       | 17    |
| September_20 | 1       | 1      | 2               | 7      | 0      | 0          | 1             | 3       | 15    |
| Total        | 14      | 31     | 3               | 17     | 0      | 0          | 1             | 20      | 86    |

## ANNEX 8: ANOPHELES FUNESTUS S.L. COLLECTED BY HLC, OUTDOOR, JANUARY–MARCH 2020 AND AUGUST - SEPTEMBER, 2020

| Month        | Fissebu | Gbedin | Jackson<br>Farm | Koryah | Madina | Saint John | Suehn<br>Town | Zeanzue | Total |
|--------------|---------|--------|-----------------|--------|--------|------------|---------------|---------|-------|
| January_20   | 2       | 1      | 0               | 0      | 0      | 0          | 0             | 0       | 3     |
| February_20  | 1       | 0      | 2               | 0      | 0      | 0          | 0             | 2       | 5     |
| March_20     | 2       | 3      | NA              | 5      | 0      | NA         | 0             | 23      | 33    |
| August_20    | 5       | 0      | 1               | 0      | 0      | 0          | 0             | 2       | 8     |
| September_20 | 9       | 3      | 0               | 4      | 0      | 0          | 0             | 30      | 46    |
| Total        | 19      | 7      | 3               | 9      | 0      | 0          | 0             | 57      | 95    |

## ANNEX 9: ANOPHELES GAMBIAE S.L. COLLECTED BY HLC, INDOOR AND OUTDOOR, JANUARY–MARCH 2020 AND AUGUST - SEPTEMBER 2020

| Location             | Fissebu | Gbedin | Jackson<br>Farm | Koryah  | Madina | Saint<br>John | Suehn<br>Town | Zeanzue | Total   |
|----------------------|---------|--------|-----------------|---------|--------|---------------|---------------|---------|---------|
| Indoor               | 28      | 225    | 167             | 49      | 13     | 26            | 503           | 13      | 1024    |
| Outdoor              | 15      | 253    | 168             | 16      | 4      | 27            | 621           | 14      | 1118    |
| Total                | 43      | 478    | 335             | 65      | 17     | 53            | 1124          | 27      | 2142    |
| Endophagic Index (a) | 0.7     | 0.5    | 0.5             | 0.8     | 0.8    | 0.5           | 0.4           | 0.5     | 0.5     |
| Exophagic Index (b)  | 0.3     | 0.5    | 0.5             | 0.2     | 0.2    | 0.5           | 0.6           | 0.5     | 0.5     |
| Ratio (a/b)          | 0.3     | -0.1   | 0.0             | 0.5     | 0.5    | 0.0           | -0.1          | 0.0     | 0.0     |
| Chi^2 (p-value)      | 0.047*  | 0.2    | 0.9             | 0.0004* | 0.029  | 0.8907        | 0.0004*       | 0.8474  | 0.0422* |

\*difference statistically significant