

PRESIDENT'S MALARIA INITIATIVE

The PMI AIRS Project Indoor Residual Spraying Task Order Six

THE DEMOCRATIC REPUBLIC OF CONGO ENTOMOLOGICAL MONITORING

2017 FINAL REPORT NOVEMBER 01, 2016 – OCTOBER 31, 2017

SUBMITTED APRIL 3, 2018

Recommended Citation: The President's Malaria Initiative (PMI)/Africa Indoor Residual Spraying (AIRS) Project. April 2018. Democratic Republic of the Congo 2017 Entomological Monitoring Report. Bethesda, MD. PMI AIRS Project Indoor Residual Spraying (IRS 2) Task Order Six, Abt Associates Inc.

Contract No. and Task order: GHN-I-00-09-00013-00 & AID- OAA-TO-14-00035

Submitted to: United States Agency for International Development/PMI

Prepared by: Abt Associates Inc.

Abt Associates Inc. | 4550 Montgomery Avenue | Suite 800 North

| Bethesda, Maryland 20814 | T. 301.347.5000 | F. 301.913.9061

ACRONYMS

AIRS	Africa Indoor Residual Spraying Project
CDC	Centers for Disease Control and Prevention
DRC	Democratic Republic of Congo
DPS	Provincial Health Division / Division Provinciale de la Santé
ELISA	Enzyme-linked Immunosorbent Assay
HBR	Human Biting Rate
HLC	Human Landing Catch
INRB	National Institute of Bio-medical Research/Institut National de Recherche Biomédicale
IRS	Indoor Residual Spraying
LLIN	Long Lasting Insecticide-treated nets
NMCP	National Malaria Control Program
PCR	Polymerase Chain Reaction
PMI	President's Malaria Initiative
PSC	Pyrethrum Spray Collection
UND	University of Notre Dame
USAID	United States Agency for International Development
WHO	World Health Organization

Contents

A	cronym	si
E	xecutiv	e Summary 1
1.	Intro	duction3
2.	Proje	ct Objectives
3.	Meth	odology6
	3.1.	Study Area 6
	3.2.	Insecticide Susceptibility and Resistance Intensity Monitoring7
	3.3.	Human Biting Rate
	3.4.	Indoor resting densities
	3.5.	Testing the effect of resistance on LLIN-induced mortality using cone
	bioassa	ay9
	3.6.	Impact of mass distribution of LLINs on the intensity of insecticide
4	resista	nce in Kinshasa
4.	RESU	
	4.1.	Vector Susceptibility to Insecticides
	4.2.	Vector Species Composition
	4.2.1.	Tshopo Province, Kabondo Site (January – June 2017) 17
	4.2.2.	Tanganyika Province, Kalemie Site (January - June 2017)17
	4.2.3.	Sud Kivu Province, Katana Site (January- June 2017)18
	4.2.4.	Kinshasa Province, Kingasani Site (January- June 2017) 18
	4.2.5	. Kasai Province, Mikalayi Site (January- June 2017) 19
	4.2.6	. Sud Ubangi Province, Karawa Site (January- June 2017) 19
	4.2.7	. Mai-Ndombe Province, Inongo Site (January- June 2017)
	4.2.8	. Kongo Central Province, Kimpese Site (January- June 2017) 21
	4.2.9	. Haut-Uele Province, Pawa Site (January- June 2017)
	4.3. Colle	Human Biting rate of Malaria Vectors Indoors and Outdoors cted by HLC
	4.4.	Biting Times of Malaria Vectors Indoors and Outdoors
	4.4.1	. Tshopo Province, Kabondo Site (January – June 2017)23
	4.4.2	. Kasai Province, Mikalayi Site (January – June 2017)

4.4.3.	Sud Ubangi Province, Karawa Site (January- June 2017)
4.4.4.	Kongo Central Province, Kimpese Site (January- June 2017)25
4.4.5.	Haut-Uele Province, Pawa Site (January- June 2017)25
4.5. (Janua	Monthly Monitoring of Malaria Vectors in Lodja and Kapolowe ary – December 2017)
4.5.1.	Biting rate
4.5.2.	Biting Times of Anopheles Species Indoors and Outdoors
4.6.	Impact of Resistance on Survival Following Exposure to LLINs 29
4.7.	Intensity of Pyrethroids Resistance of An. gambiae s.l. in Kinshasa 30
5. Anophe	les paludis
6. Training	g
7. Annex	

The President's Malaria Initiative (PMI) Africa Indoor Residual Spraying (AIRS) Project conducted pyrethrum spray catch (PSC) and human landing catch (HLC) activities in the Democratic Republic of Congo (DRC) in 11 sentinel sites in 2017. The project conducted PSC and HLC during three periods: January to February, March to April, and May to June in nine sentinel sites. Of the 11 sites, four are new locations conducting trapping activities for the first time. The project monitored malaria vector dynamics and behavior monthly from January to December 2017 in two sites, Kapolowe and Lodja. *Anopheles gambiae* s.l. was present in all 11 sites, but were collected in higher numbers in Kabondo, Kalemie, Karawa, Pawa, and Lodja. The project captured another major malaria vector, *An. funestus* s.l., at higher densities in Katana, Mikalayi, Kabondo, and Kimpese.

The project completed insecticide susceptibility bioassays using *Anopheles gambiae* s.l. for permethrin, deltamethrin, and alpha-cypermethrin in 11 sites, with intensity tests in 10 sites. The team documented resistance to permethrin at all sites, to deltamethrin in four sites, and to alpha-cypermethrin in two sites. Resistance intensity to permethrin was high in all sites. Resistance intensity to deltamethrin was generally lower, with 98-100% mortality at 10 times the diagnostic concentration in five sentinel sites.

The project conducted Centers for Disease Control and Prevention (CDC) bottle bioassays in March, June, and July to determine the intensity of resistance in the Kinshasa suburbs in the wake of the 2016 mass long-lasting insecticidetreated net (LLIN) distribution campaign. In all Kinshasa municipalities, *An. gambiae* s.l. were susceptible to 5X and 10X the diagnostic concentration of deltamethrin. In contrast, there were survivors to permethrin at 2X, 5X, and 10X the diagnostic concentration. There did not appear to be any clear differences between 2016 and 2017 resistance intensity, with no clear increase in resistance intensity as a result of LLIN distribution.

The University of Notre Dame (UND) has sequenced a sub-sample of *An. paludis* as part of a wider effort to determine malaria risk after recording high biting rates in some sites. Of the *An. paludis* samples tested from Kapolowe, the majority were molecularly identified as being *coustani*-like species (*An. cf coustani* 1 & 2) with the sequences corresponding to those previously reported from Zambia. The team conducted HLC in Kenge in the Kwango Province to collect specimens of *An. paludis*, which Karch and Mouchet identified in 1992 as a malaria vector in this region [1].

As part of the capacity building component, the team, in collaboration with the National Malaria Control Program (NMCP), conducted a group training for three supervisors from each of the 11 sites in Kinshasa from July 17 to July 22, 2017.

1. INTRODUCTION

Morbidity and mortality due to malaria remain a serious public health problem in the Democratic Republic of Congo (DRC) despite sustained malaria control strategies. According to the 2013/14 Demographic and Health Survey (DHS), from a total of 7,250 dried blood spots tested from children sampled across all 26 Provincial Health Divisions/ Divisions Provinciales de la Santé (DPS), Rapid diagnostic tests produced a 30.9% positive rate for P. falciparum using while polymerase chain reaction (PCR) produced a 34.1% rate. Current malaria control strategies in DRCrely heavily on core vector control interventions, especially the use of long lasting insecticide nets (LLINs). WHO estimates that between 2014 and 2016, approximately 61 million LLINs were distributed, with 77% of the population having access to an LLIN according to modelling studies (WHO, 2016). Between 2010 and 2014, LLINs aided by therapeutic treatments contributed to a 10% reduction of malaria morbidity and a 37% reduction in deaths for children under five years old (PSN, 2016-2020). However, more recent data indicated a trend showing an estimated increase of 500,000 malaria cases between 2015 and 2016 (WHO, 2016), which may in part be due to improvements in the reporting system and increased utilization of health services.

LLIN mass distribution campaigns are organized with the support of donors, including the President's Malaria Initiative (PMI), and occur throughout many DRC regions. The NMCP has planned LLIN distributions every three years since 2007, with mass distribution campaigns taking place annually in different provinces. In 2017, mass distribution campaigns were conducted with Yorkool[®], Duranet[®] and Dawaplus 2.0[®]. In addition to mass distributions, Permanet 2.0[®] and Duranet[®] are distributed to pregnant women during antenatal care visits and to children under one year of age at health clinics. Abt Associates conducts entomological monitoring and surveillance through PMI's Africa Indoor Residual Spraying (AIRS) Project in the DRC to help evaluate the impact of LLIN use on malaria vectors (vector density, seasonal distribution, behavior, species composition, and insecticide susceptibility). This report covers the entomological activities Abt undertook in 11 sites (Kingasani, Kalemie, Katana, Mikalayi, Lodja, Kapolowe, Kabondo, Pawa, Karawa, Inongo, and Kimpese) during year three of the task order (TO6) contract.

2. **PROJECT OBJECTIVES**

The goal of entomological activities in the DRC is to build capacity in generating data on malaria vectors and to develop tools to control them. The objectives are to:

1. Continue to conduct high-quality entomological monitoring activities with minimum technical assistance from outside the DRC.

2. Expand support for monitoring species composition, seasonality, behavior, and infectivity of malaria vectors in 11 sentinel sites (previously seven) in 11 provinces: Kinshasa, Kasai, Sankuru, Tshopo, Haut-Uele, Sud Kivu, Haut Katanga, Tanganyika, Kongo Central, Mai-Ndombe, and Sud Ubangi.

3. Determine the susceptibility level of the main vector of malaria, *Anopheles gambiae* s.l., to three insecticides (permethrin, deltamethrin and alphacypermethrin) recommended by the World Health Organization (WHO) Pesticide Evaluation Scheme for LLINs in the 11 sentinel sites. We also will determine the intensity of insecticide resistance to permethrin and deltamethrin using the CDC bottle assay in seven sites.

4. Continue to support the evaluation of *Anopheles paludis* as a malaria vector in Kapolowe (Haut Katanga) and Lodja (Sankuru). This includes close collaboration with the UND for sequencing mosquito samples to determine whether *An. paludis* is a species complex with some species being more important malaria vectors.

5. Determine the impact of insecticide resistance on mosquito survival following exposure to LLINs using WHO cone bioassays for permethrin and deltamethrin LLINs with both insectary-reared susceptible and wild resistant *An. gambiae* s.l. mosquitoes.

6. Provide technical and material assistance to the NMCP in the development of its indoor residual spraying (IRS) strategy and national resistance monitoring plan.

7. Hire an AIRS medical entomologist who will provide daily support to the National Institute of Bio-medical Research/Institut National de Recherche Biomédicale (INRB) team on all technical and administrative matters.

8. Continue to build entomological capacity by strengthening laboratory quality assurance through collaboration with the UND and conducting training in mosquito identification with support from the new medical entomologist.

3. Methodology

3.1. Study Area

The project undertook entomological monitoring activities in 11 sentinel sites (Kingasani, Kalemie, Katana, Mikalayi, Lodja, Kabondo, Kapolowe, Pawa, Karawa, Inongo and Kimpese) in the DRC (Figure 1 and Table 1) in 2017.

Table 1: 2017 sentinel sites for entomological surveillance

Old Province	New Province	Sentinel Site	Year added
Kinshasa	Kinshasa	Kingasani	2014
Kasai Occidental	Kasai	Mikalayi	2014
Kasai Oriental	Sankuru	Lodja	2013
Orientale	Tshopo	Kabondo	2013
Orientale	Haut-Uele	Pawa	2017
Sud Kivu	Sud Kivu	Katana	2015
Katanga	Haut Katanga	Kapolowe	2013
Katanga	Tanganyika	Kalemie	2015

Bas-Congo	Kongo Central	Kimpese	2017
Bandundu	Mai-Ndombe	Inongo	2017
Equateur	Sud Ubangi	Karawa	2017

INRB staff based in Kinshasa traveled to each site in 2017 to provide technical support. Sampling periods were January-March, April-June, and July-September in 9 of 11 sites. Vector sampling frequency in Kapolowe and Lodja was conducted monthly to determine seasonal vector dynamics.

In Lodja, monthly sampling was conducted in the following sites:

Cotonnière: altitude 414m, **S** 03° 32' 369", **E** 023° 34' 981" (Jan, May, June, July, Aug, Sept, Oct, Nov, Dec).

Diengenga: altitude, 494m, **S** 03° 26' 613", **E** 023° 36' 301" (February)

Asami (Edingo): altitude 453m, S 03° 30' 948", E 023° 35' 716" (March)

Shapembe: altitude 461m, S 03° 32' 092", E 023° 37' 617" (April)

In Kapolowe, monthly mosquito sampling was conducted in several locations within Kapolowe Mission.

Kapolowe Mission: altitude 1145 m, S 10° 56' 655", E O26° 57' 014"

3.2. Insecticide Susceptibility and Resistance Intensity Monitoring

Collections of *Anopheles gambiae* s.l. larvae were performed in all 11 sentinel sites using larval dippers and sieves. The larvae were reared in a field insectary and the emergent adults were raised to two to five days old for insecticide resistance tests. Insecticide resistance status was assessed using the WHO cylinder test using diagnostic concentrations of deltamethrin (0.05%), permethrin (0.75%), and alpha-cypermethrin (0.05%). At least 100 *An. gambiae* s.l. were exposed to each insecticide in replicates of 25. The project monitored knock-down every 10 minutes for 60 minutes. The tested mosquitoes were then transferred to a clean paper cup, provided with cotton wool soaked in sugar solution, and mortality was scored 24 hours after exposure.

The project determined the intensity of insecticide resistance to deltamethrin and permethrin using the CDC bottle assay for the first time in seven sentinel sites. Four replicates of 20 *An. gambiae* s.l. were exposed to each concentration of one, two, five, and 10 times the diagnostic dose. Following CDC protocols, the team recorded mortality at the diagnostic time of 30 minutes.

3.3. Human Biting Rate

Human Landing Catch (HLC)

The project used the HLC method to assess mosquito biting times and feeding behavior and to monitor species composition and sporozoite rates. Two teams collected adult mosquitoes during four consecutive nights (in two different houses each night), with one person indoors and the other outdoors in each selected house. Four collectors worked at each house, with each person working a six-hour shift (one person from 18:00 to midnight and the other from midnight to 06:00 indoors and outdoors). The human biting rate (HBR) was calculated for each sampling period based on eight person nights of collection.

3.4. Indoor resting densities

Pyrethrum Spray Catch (PSC)

The project used PSC to estimate the indoor resting density of mosquito species. Indoor PSC was used in ten houses/bedrooms at each sentinel site. The PSCs were carried out between 06:00 and 10:00. All occupants were asked to move water, food, or anything that insecticide could harm out of the house before spraying. The project sprayed a commercial aerosol (Baygon, SC Johnson, South Africa) containing the pyrethroids imiprothrin, prallethrin, tetramethrin, and synergist piperonyl butoxide (PBO) in each room; white sheets were lined on floors and other surfaces to collect mosquitoes. All mosquitoes were collected from the white sheets 15 minutes after spraying. Female *Anopheles* mosquitoes were classified according to abdominal status (unfed, fed, half-gravid, or gravid). Each mosquito was labeled for subsequent analysis at INRB for sibling species identification using PCR and other labbased analysis.

3.5. Testing the effect of resistance on LLIN-induced mortality using cone bioassays

Pyrethroid nets containing permethrin, deltamethrin, and alphacypermethrin were collected from Inongo in the province of Mai-Ndombe. Net age was estimated based on the timing of previous distribution campaigns in the region. Four of each of the following LLINs were collected from the community:

- 1- Permethrin LLIN (Olyset®): 5 years old
- 2- Deltamethrin LLIN (Yorkool®): 1 year old
- 3- Alpha-cypermethrin LLIN (Duranet®): 6 months old

Four nets of each brand were tested using WHO cone bioassays. Each net was tested with five cones, with one cone placed on each of the four sides at different heights, and one in the center of the roof. Bioassays were conducted with both insectary reared susceptible *An. gambiae* Kisumu and wild pyrethroid resistant *An. gambiae* s.l from Kingasani (Kinshasa) to determine the impact of resistance on survival following exposure to LLINs.

The efficacy of the used nets was compared with new nets of each brand obtained from Centre de Recherche Entomologique de Cotonou (CREC), Benin in October 2017, with mortality compared with the WHO bio-efficacy threshold.

3.6. Impact of mass distribution of LLINs on the intensity of insecticide resistance in Kinshasa

The objective of this study was to determine if selection pressure due to mass distribution of LLINs affects insecticide resistance intensity in Kinshasa. Insecticide resistance intensity in *Anopheles gambiae* s.l. was monitored in four sites (Bu, Kingasani, Kinkole, and Kimpoko) within Kinshasa before the start of the 2016 mass LLIN distribution campaign. Resistance was monitored using the intensity assay (bottle bioassays using 1, 2, 5, and 10 times the diagnostic dose of permethrin and deltamethrin). Insecticide resistance intensity was also monitored in Kasangulu, a control area 40km from Kinshasa where there was no plan for mass distribution of LLINs (the last distribution in Kasangulu was in 2014). Intensity assays were conducted in 2017 in March, June, and October.

4. **Results**

4.1. Vector Susceptibility to Insecticides

Maps of resistance for permethrin, deltamethrin, and alpha-cypermethrin are shown in Figure 2. Detailed results and comparison with 2016 data are shown in Table 2. There was no mortality for control bioassays conducted with oiltreated blank papers in 2017 (Table 2).

Permethrin resistance was widespread in DRC. The team recorded it at all 11 sentinel sites at moderate or high frequency (Figure 2). In Katana and Kapolowe, the frequency of permethrin resistance increased, with 38% (95% CI: 29-48) and 9% (95% CI: 5-16) mortality in 2017, compared with 100% at both sites in 2016 (Table 2); however, for Kapolowe it should be noted that resistance to permethrin was previously recorded in 2015.

The project observed deltamethrin resistance in four sites (Kimpese, Karawa, Pawa, and Kalemie) and detected possible resistance in five sites (Kingasani, Mikalayi, Kabondo, Kapolowe, and Lodja). The *An. gambiae* s.l. populations from Inongo and Katana were susceptible to deltamethrin 0.05%.

Populations of *An. gambiae* s.l. were fully susceptible to alpha-cypermethrin (0.05%) in all sites except Kingasani and Kalemie, where the project detected resistance. There was also possible resistance in Karawa.

Figure 2 : Insecticide WHO susceptibility maps for a) permethrin (0.75%), b) deltamethrin (0.05%), c) alpha-cypermethrin (0.05%)

A) PERMETHRIN (0.75%)

B) **DELTAMETHRIN (0.05%)**

C) ALPHA-CYPERMETHRIN (0.05%)

Table 2. Insecticide susceptibility status of *An. gambiae* s.s. exposed to WHO diagnostic doses of deltamethrin, permethrin, and alpha-cypermethrin in 2017

Sentinel Sites	Insecticides	2017 Nbr Exposed (control)	2017 Nbr Exposed (test)	2017 24hrs % Mortality (95% CI)	2016 24hrs % Mortality (95% CI)
Kingasani	Deltamethrin 0.05%	50	100	93 (86 – 97)	100
	Permethrin 0.75%	50	100	<mark>86</mark> (78 – 91)	21 (13 – 29)
	Alpha-cypermethrin 0.05%	50	100	<mark>55</mark> (45 – 64)	Not tested
Mikalayi	Deltamethrin 0.05%	50	100	92 (85 – 96)	<mark>88</mark> (82 - 94)
	Permethrin 0.75%	50	100	26 (18 – 35)	36 (27 - 45)
	Alpha-cypermethrin 0.05%	50	100	100	Not tested
Kabondo	Deltamethrin 0.05%	50	100	95 (89 – 98)	76 (68 – 84)
	Permethrin 0.75%	50	100	<mark>88</mark> (80 – 93)	12 (6 – 18)
	Alpha-cypermethrin 0.05%	50	100	99 (95 – 100)	Not tested
Kapolowe	Deltamethrin 0.05%	50	100	97 (92 – 99)	100
	Permethrin 0.75%	50	100	9 (5 – 16)	100
	Alpha-cypermethrin 0.05%	50	100	99 (95 – 100)	Not tested
Kimpese	Deltamethrin 0.05%	50	100	76 (67 – 83)	Not tested
	Permethrin 0.75%	50	100	17 (11 – 26)	Not tested
	Alpha-cypermethrin 0.05%	50	100	100	Not tested

Karawa	Deltamethrin 0.05%	50	100	<mark>61</mark> (51 – 70)	Not tested
	Permethrin 0.75%	50	100	56 (46 – 65)	Not tested
	Alpha-cypermethrin 0.05%	50	100	93 (86 – 97)	Not tested
Pawa	Deltamethrin 0.05%	50	100	<mark>83</mark> (74 – 89)	Not tested
	Permethrin 0.75%	50	100	<mark>64</mark> (54 – 73)	Not tested
	Alpha-cypermethrin 0.05%	40	80	99 (93 – 100)	Not tested
Inongo	Deltamethrin 0.05%	50	100	100	Not tested
	Permethrin 0.75%	50	100	<mark>22</mark> (15 – 31)	Not tested
	Alpha-cypermethrin 0.05%	50	100	99 (95 – 100)	Not tested
Kalemie	Deltamethrin 0.05%	50	100	24 (17 – 33)	100
	Permethrin 0.75%	50	100	<mark>3</mark> (1 − 8)	40 (30 – 50)
	Alpha-cypermethrin 0.05%	50	100	14 (9 – 22)	Not tested
Katana	Deltamethrin 0.05%	50	100	100	100
	Permethrin 0.75%	50	100	<mark>38</mark> (29 – 48)	100
	Alpha-cypermethrin 0.05%	50	100	100	Not tested
Lodja	Deltamethrin 0.05%	50	100	95 (89 – 98)	100
	Permethrin 0.75%	50	100	69 (59 – 77)	69 (60 – 78)
	Alpha-cypermethrin 0.05%	50	100	100	Not tested

Notes: (S) = susceptibility (R) = resistance (PR) = possible resistance

Resistance intensity data for permethrin and deltamethrin for seven sentinel sites are summarized in Tables 3 and 4. In all seven sites, An. gambiae s.l. were highly resistant to permethrin, with relatively low mortality even at 10 times the diagnostic concentration.

Resistance intensity to deltamethrin was generally lower than to permethrin, with 98-100% mortality at 10 times the diagnostic concertation in five of seven sentinel sites. However, the proportion of survivors at two times the diagnostic concentration of deltamethrin was generally high, with mean mortality of 63% across all sites. The data contradict the findings of WHO susceptibility tests, which showed full susceptibility to deltamethrin in two sites, possible resistance in five sites and resistance to deltamethrin only in Kimpese, Karawa, Pawa and Kalemie.

Full susceptibility was recorded in WHO tests in Inongo and Katana. Conversely, 24% survivors were recorded in Inongo at two times the diagnostic concentration and 20% survivors at five times in Katana.

ulagilostic	concentiat	1011 01 per	metmm					
		% Mortality (95% CI)						
			Permethrin concentration					
	Total							
	Number							
Sentinel	tested							
Site	per dose	x1	x2	x5	x10			
Kabondo	100	1	4	23	43			
		(0-5)	(2-10)	(16-32)	(34-53)			
Kalemie	80	0	3	14	40			
		(0-5)	(1-9)	(8-23)	(30-51)			
Katana	100	8	18	36	80			
		(4-15)	(12-27)	(27-46)	(71-87)			
Kingasani	100	0	1	15	38			
		(0-4)	(0-5)	(9-23)	(29-48)			
Mikalayi	80	9	11	18	25			
		(4-17)	(6-20)	(11-27)	(17-35)			

Table 3: Resistance intensity of An. gambiae s.l. to $\times 1$, $\times 2$, $\times 5$, $\times 10$ the diagnostic concentration of permethrin

Inongo	78	10	5	15	16
		(5-19)	(2-12)	(9-25)	(10-26)
Kapolowe	100	0	0	10	68
		(0-4)	(0-4)	(6-17)	(58-76)
Overall	638	4	6	19	46
		(2-6)	(4-8)	(16-22)	(42-50)

*NB. In each test, 25 An. gambiae s.l. were in an untreated control. Mortality was zero in all.

Table 4: Resistance intensity of An. gambiae s.l. to $\times 1$, $\times 2$, $\times 5$, $\times 10$ the diagnostic concentration of deltamethrin

		% Mortality (95% CI) Deltamethrin concentration			
Sontinol	Total number				
Site	per dose	x1	x2	x5	x10
Kabondo	100	41	87	98	100
		(32-51)	(79-92)	(93-99)	(96-100)
Kalemie	80	18	30	84	99
		(11 - 27)	(21-41)	(74-90)	(93-100)
Katana	100	21	55	80	98
		(14-30)	(45-64)	(71-87)	(93-99)
Kingasani	100	44	85	100	100
		(35-54)	(77-91)	(96-100)	(96-100)
Mikalayi	80	75	78	85	96
		(65-83)	(67-85)	(76-91)	(90-99)
Inongo	80	66	76	100	99
		(55-76)	(66-84)	(95-100)	(93-100)
Kapolowe	100	24	32	61	80
		(17-33)	(24-42)	(51-70)	(71-87)
		40	63	87	96
Overall	640	(36-44)	(60-67)	(84-89)	(94-97)

*NB. In each test, 25 An. gambiae s.l. were tested in an untreated control. Mortality was zero in all.

4.2. Vector Species Composition

4.2.1. Tshopo Province, Kabondo Site (January – June 2017)

In Kabondo, *An. gambiae* s.l. was the most common species caught by HLC and PSC throughout the year.

4.2.2. Tanganyika Province, Kalemie Site (January - June 2017)

Figure 4: Distribution of *Anopheles* captured by PSC and HLC indoors and outdoors in Kalemie

An. gambiae s.l. was the predominant species caught in Kalemie through PSC and HLC.

4.2.3. Sud Kivu Province, Katana Site (January- June 2017)

Figure 5: Distribution of *Anopheles* captured by PSC and HLC indoors and outdoors in Katana

In Katana, *An. gambiae* s.l. and *An. funestus* s.l. were caught in similar proportions by PSC and HLC outdoors.

4.2.4. Kinshasa Province, Kingasani Site (January- June 2017)

Figure 6: Distribution of *Anopheles* captured by PSC and HLC indoors and outdoors in Kingasani

In Kingasani, *An. gambiae* s.l. was the predominant species followed by approximately 15-20% *An. funestus* s.l. collected by PSC and HLC.

4.2.5. Kasai Province, Mikalayi Site (January- June 2017)

Figure 7: Distribution of *Anopheles* Captured by PSC and HLC indoors and outdoors In Mikalayi

In Mikalayi, *An. funestus* s.l. was the predominant species collected by PSC and HLC both indoors and outdoors.

NEW SENTINEL SITES FOR 2017 (KARAWA, INONGO, KIMPESE, PAWA)

4.2.6. Sud Ubangi Province, Karawa Site (January- June 2017)

Figure 8: Distribution of *Anopheles* Captured by PSC and HLC indoors and outdoors in Karawa

In Karawa, *An. gambiae* s.l. accounted for 99% of *Anopheles* caught by PSC and HLC both indoors and outdoors.

4.2.7. Mai-Ndombe Province, Inongo Site (January- June 2017)

Figure 9: Distribution of *Anopheles* Captured by PSC and HLC indoors and outdoors in Inongo

In Inongo, 99% of *Anopheles* PSC collected resting indoors were *An. gambiae* s.l. For HLC indoors and outdoors, around 40% were *An. paludis*. This suggests *An. paludis* rest predominantly outdoors, even after indoor biting.

4.2.8. Kongo Central Province, Kimpese Site (January-June 2017)

Figure 10: Distribution of *Anopheles* Captured by PSC and HLC Indoors and Outdoors in Kimpese

In Kimpese, *An. funestus* s.l. was the most abundant species collected by HLC and PSC.

4.2.9. Haut-Uele Province, Pawa Site (January- June 2017)

Figure 11: Distribution of *Anopheles* Captured by PSC and HLC indoors and outdoors in Pawa

In Pawa, *An. gambiae* s.l. were most abundant (83%-92%) followed *An. paludis* (8%-16%). The project collected *An. paludis* mostly during the dry season (May-June) (see Annex). Unlike in Inongo, the team captured *An. paludis* resting indoors.

4.3. Human Biting rate of Malaria Vectors Indoors and Outdoors Collected by HLC

	INDOORS			OUTDOORS		
Sentinel site		Nbr of			Nbr	
and species	Nbr	person-		Nbr	person-	
	mosquitoes	nights	HBR/night	mosquitoes	nights	HBR/night
Kabondo						
An. gambiae s.l.	456	24	19	347	24	14
An. funestus s.l.	45	24	2	23	24	1
Kalemie						
An. gambiae s.l.	105	24	4	75	24	3
An. funestus s.l.	5	24	0	0	24	0
Katana						
An. gambiae s.l.	72	24	3	11	24	0
An. funestus s.l.	29	24	1	10	24	0
Kingasani						
An. gambiae s.l.	63	24	3	183	24	8
An. funestus s.l.	12	24	1	42	24	2
Mikalayi						
An. gambiae s.l.	29	24	1	20	24	1
An. funestus s.l.	246	24	10	95	24	4
Karawa						
An. gambiae s.l.	405	24	17	321	24	13
An. funestus s.l.	1	24	0	2	24	0
Inongo						
An. gambiae s.l.	54	24	2	59	24	2
Kimpese						
An. gambiae s.l.	37	24	2	37	24	2
An. funestus s.l.	772	24	32	953	24	40
Pawa						
An. gambiae s.l.	543	24	23	761	24	32
An. funestus s.l.	2	24	0	2	24	0

Table 5: Indoor mean HBR of malaria vectors (January-June 2017)

The mean indoor human biting rate of *An. gambiae* s.l. in 2017 varied between one bite per person per night in Mikalayi and up to 23 bites per person per night in Pawa. The outdoor human biting rate of *An. gambiae* s.l. in 2017

varied between zero bites per person per night in Katana and up to 32 bites per person per night in Pawa. In general, there was significant outdoor biting potential, with outdoor biting rates similar to indoor biting rates for both *An. gambiae* s.l. and *An. funestus* s.l.

The biting rate of *An. funestus* s.l. was substantial in two sites, with an indoor biting rate of 10 in Mikalayi and 32 bites per person per night in Kimpese. Statistical comparison of biting rates should not be made between regions due to the relatively small number of houses sampled and differences in sampling timing.

4.4. Biting Times of Malaria Vectors Indoors and Outdoors

Biting trends are presented only for locations where the total number caught per species by HLC was >200 between January and June 2017. In general, indoor biting by *An. gambiae* s.l. and *An. funestus* s.l. was primarily late at night, between 22:00 and 05:00, and mirrored outdoor biting trends. In Kimpese and Pawa, there was substantial biting occurring between 5:00am and 6:00am; thus, longer monitoring may be useful to determine whether morning biting occurs.

4.4.1. Tshopo Province, Kabondo Site (January – June 2017)

Figure 12: Mean nightly biting activity of *An. gambiae* s.l. at Kabondo site (January – June 2017), N=456 Indoors, N=347 Outdoors.

(n refers to total An. gambiae collected over the trapping period)

4.4.2. Kasai Province, Mikalayi Site (January – June 2017)

Figure 13: Biting ativity of An. funestus s.l. at Mikalayi site (January – June 2017), N=246 Indoors, N=95 Outdoors

(n refers to total An. gambiae collected over the trapping period)

NEW SENTINEL SITES FOR 2017 (KARAWA, KIMPESE, PAWA)

4.4.3. Sud Ubangi Province, Karawa Site (January- June 2017)

Figure 14: Biting activity of *An. gambiae* s.l. at Karawa site (January – June 2017), N=405 Indoors, N=321 Outdoors

(n refers to total An. gambiae collected over the trapping period)

4.4.4. Kongo Central Province, Kimpese Site (January-June 2017)

Figure 15: Biting activity of An. funestus s.l. at Kimpese site (January – June 2017) N=772 Indoors, N=953 Outdoors

(n refers to total An. gambiae collected over the trapping period)

4.4.5. Haut-Uele Province, Pawa Site (January- June 2017)

Figure 16: Biting activity of *An. gambiae* s.l. at Pawa site (January – June 2017) N=543 Indoors, N=761 Outdoors

(n refers to total An. gambiae collected over the trapping period)

4.5. Monthly Monitoring of Malaria Vectors in Lodja and Kapolowe (January – December 2017)

4.5.1. Biting rate

In Kapolowe, *An. funestus* s.l. was the most abundant malaria vector, with particularly high biting rates at >100 bites per person per night in March and consistently above 20 bites throughout the year.

The peak biting rates for *An. gambiae* s.l. were between January and March (the rainy season). For *An. funestus* s.l., the biting peak was later, between March and May, with biting continuing at relatively high rates throughout the dry season (Figures 17).

In Lodja, *An. gambiae* s.l. was the primary malaria vector collected, with three apparent biting peaks in January, May, and October (Figure 18). *An. paludis* biting was predominantly outdoors and peaked in September with 40 bites per person per night (Figure 18).

Figure 18: Monthly indoor (left) and outdoor (right) biting rate of Anopheles species in Lodja (Sankuru) from HLC collections (8 houses per month) — An. gambiae s.l

4.5.2. Biting Times of Anopheles Species Indoors and Outdoors

In Kapolowe, the mean hourly biting rates of *An. gambiae* s.l. and *An. funestus* s.l. were fairly constant throughout the night both indoors and outdoors (Figure 19). This is in keeping with trends from 2016.

In Lodja, *An. gambiae* s.l. biting trends were mirrored indoors and outdoors, with a gradual increase in biting rates until the peak at 1:00, followed by a gradual decrease until dawn (Figure 20).

Figure 19: Nocturnal biting times of An. gambiae s.l. and An. funestus s.l. indoors and outdoors in Kapolowe (Haut Katanga).

Figure 20: Nocturnal biting times of An. gambiae s.l. and An. funestus s.l. indoors and outdoors in Lodja (Sankuru)

Figure 21: Nocturnal biting times of *An. paludis* indoors and outdoors in Lodja (Sankuru)

4.6. Impact of Resistance on Survival Following Exposure to LLINs

Table 6: Bio-efficacy of used permethrin, deltamethrin, and alphacypermethrin LLINs against laboratory susceptible Kisumu and wild resistant *An. gambiae* s.l. population from Kingasani

	K	Kisumu	Wild				
Net tested	Number	%Mortality	Number	%Mortality			
	tested	(CI)	tested	(CI)			
Permethrin LLIN							
Olyset® used (≈5 yrs old)	80	35 (25-46)	100	23 (16-32)			
Olyset® new	29	55 (36-72)	25	28 (14-48)			
	Deltan	nethrin LLIN					
Yorkool® used (≈1 yr old)	76	33 (23-44)	100	16 (10-24)			
Yorkool® new	27	74 (55-87)	25	44 (27-63)			
	Alpha-cyp	ermethrin LLIN	1				
Duranet® used (≈6 mths							
old)	95	100 (96-100)	100	47 (38-57)			
Duranet® new	28	100 (88-100)	25	100 (87-100)			

0% mortality rate was observed in control with untreated net against both susceptible and resistant *An. gambiae* s.l.

WHO susceptibility tests showed that wild *An. gambiae* s.l. from Kingasani were resistant to permethrin and alpha-cypermethrin, with possible resistance to deltamethrin.

All used and new permethrin and deltamethrin LLINs produced mortality rates inferior to the WHO bio-efficacy threshold of 80% mortality at 24h after exposure for both insectary and wild *An. gambiae* s.l. The biggest difference in mortality was for the used Duranet, with mortality at 47% for wild *An. gambiae* s.l. and 100% for *An. gambiae* Kisumu. This appears to indicate that alphacypermethrin resistance in Kingasani may affect used LLIN performance.

4.7. Intensity of Pyrethroid Resistance of An. gambiae s.l. in Kinshasa

Table 7: Summary of insecticide resistance intensity in Kasangulu andKinshasa (2016 and 2017)

		Resist	Pern tance in	ermethrin dose intensity classification					
		Year 2016		Year 20	17 (March-C	october)			
Village	Low ¹	Moderate ²	High ³	Low ¹	Low ¹ Moderate ² High ³				
Control 40	km out	side Kinsha	sa						
Kasangulu			~			✓			
Kinshasa a	rea								
Bu Village			✓			✓			
Kimpoko			\checkmark			\checkmark			
Kingasani			✓			✓			
Kinkole			\checkmark			✓			

	Deltamethrin dose Resistance intensity classification						
		Year 2016		Year 20	17 (March-C	ctober)	
Village	Low ¹	Moderate ²	High ³	\mathbf{Low}^1	Moderate ²	High ³	
Control 40	km out	side Kinsha	sa				
Kasangulu		✓			✓		
Kinshasa a	rea						
Bu Village			✓			✓	
Kimpoko			\checkmark		✓		
Kingasani		✓		\checkmark			
Kinkole			\checkmark		✓		

¹Mortality of 98-100% at the 5x concentration; ² Mortality of < 98% at 5x but in the range 98-100% and ³ Mortality < 98% at the 5x and 10x.

Permethrin resistance intensity was the same (high) before (2016) and after (2017) the mass LLIN distribution in Kinshasa suburbs. Deltamethrin resistance intensity was the same (moderate) in Kasangulu before (2016) and after (2017) the LLINs distribution. Observed deltamethrin resistance intensity in 2017 was less than that in 2016 in Kimpoko, Kingasani, and Kinkole. The detailed data are in Annex C.

University of Notre Dame received samples morphologically identified as *An. paludis* collected by HLC in 2015, predominantly from Kapolowe. The team dissected a subset of samples (head and thorax from abdomen), extracted DNA using cetyl trimethylammonium bromide, conducted internal transcribed spacer polymerase chain reaction, amplified samples, and conducted Sanger sequencing. Of the *An. paludis* samples tested from Kapolowe, the majority were molecularly identified as being *coustani*-like species (*An. cf coustani* 1 & 2) with the sequences corresponding to those reported from Zambia.

Human landing catch was conducted in Kenge in the Kwango Province to research the presence of *An. paludis*, which was identified as a malaria vector in this region in 1992 (Karch et al). Just one female specimen was captured and identified as *An. paludis*. This specimen was sent to CDC/Atlanta for further analysis. *An. paludis* collected from all sites in 2017 will be sent to the University of Notre Dame for sequencing analysis.

In collaboration with the NMCP, the INRB conducted group training for three supervisors from each of the 11 sites in Kinshasa from July 17 to July 22. The objective was for field supervisors at all sites to be able to conduct insecticide susceptibility testing and morphological species identification in addition to PSC and HLC. The training consisted of theoretical instruction on mosquito morphological identification, mosquito sampling methods, rearing mosquitoes in the laboratory, labelling and conservation of mosquito samples, susceptibility, and CDC bottle resistance intensity testing. INRB conducted practical sessions in the field on HLC, PSC, and larvae collections and in the laboratory by performing WHO susceptibility tests and intensity tests according to standard operation procedures (SOPs) 001/01 and 001/03.

AIRS Entomologist Dr. Rodrigue Fiacre Agossa worked with the INRB team as a trainer. He focused his efforts on capacity building by developing a culture of using SOPs for all activities, improving supervisors' skills in mosquito identification, improving productivity of the insectary, troubleshooting field data, and working with the laboratory team.

7. ANNEX

ANNEX A. Schedule For Entomological Activities

Table 8. Schedule for entomological activities

Activity	Purpose	Timeline	Frequency	STATUS
Vector composition, behavior, and infectivity	To morphologically identify malaria vectors, determine vector composition and infectivity	January – March 2017 April - June 2017 July – Sept 2017	9 sites, 3 times	Vector Infectivity data collection ongoing. Morphological ID complete.
Seasonal vector dynamics, species composition, annual innoculation rate, biting times.	To gather more detailed annual information on malaria vector dynamics and behavior	November 2016 – October 2017	2 sites, every month	Completed
Vector behavior	To evaluate the indoor/outdoor resting/biting behavior of the vector in sentinel areas	January – March 2017 April - June 2017 July – Sept 2017	9 sites, 3 times per sites	Completed
Vector susceptibility	To determine vector susceptibility level to at least three insecticides recommended for LLINs	April 2017	11 sites, 1 time per site	Completed
Molecular assays	To identify the mosquito species, molecular forms of <i>An. gambiae</i> s.s. and mechanism of resistance (knockdown resistance)	March - December 2017	11 sites	Not yet completed. Scheduled for January to May 2018 Quality assurance training scheduled for May 2018.

Activity	Purpose	Timeline	Frequency	STATUS
Vector susceptibility	Determine intensity of insecticide resistance	July – Auguest 2017	7 sites	Completed
Enzyme-linked immunosorbent assay (ELISA) work	To determine the sporozoite rate and calculate the entomological inoculation rate	March – October 2017	11 sites	Completed for 9 sites. Not yet completed in Kapolowe and Lodja. Scheduled for January and February 2018
Evaluation of <i>Anopheles paludis</i> as malaria vector	Determine whether <i>An. paludis</i> is a vector of malaria in Kenge	March 2017	1 site, 1 time	Completed; however, only one <i>An. paludis</i> female was captured. It was sent to CDC for analysis

ANNEX B. Technical Support

Scientific support – short-term technical assistance in DRC from Richard Oxborough (AIRS). Technical, financial, and contractual support from Djenam Jacob (AIRS).	The technical team conducted a short-term technical assistance trip in May 2017. The technical team visited field sites in Kimpese where April - June 2017 activities took place. The technical team shared the objectives of the study with the local authorities and gave guidance to supervisors for mosquito species identification and susceptibility testing. The financial team explored the financial network.
Training	INRB and Dr. Agossa, in collaboration with the NMCP, conducted group training for three supervisors from each of the 11 sites in Kinshasa from July 17 to July 22 with financial support from Abt through PMI AIRS. The objective is for field supervisors at all sites to be able to conduct insecticide susceptibility testing and species identification in addition to PSC and HLC.

ANNEX C: Results

TSHOPO PROVINCE, KABONDO SITE (JANUARY – JUNE 2017)

Table 9: HBR of malaria vectors indoors and outdoors in the Kabondo site (January-February, March-April and May-June 2017)

Site			KA	BONDO		
Pe	riod		January	- June, 20	017	
Me	thod			HLC		
Species	Area	Variables	Jan/	Mar/	May/	Jan-
opecies	Alta	Vallables	Feb	Apr	June	June
		Total mosquitoes	152	143	161	456
le s.l.	Indoor	Nbr person- night	8	8	8	24
bia		HBR/night	19	18	20	19
am		Total mosquitoes	107	150	90	347
An. g	Outdoor	Nbr person- night	8	8	8	24
		HBR/night	13	19	11	14
	Indoor	Total mosquitoes	29	11	5	45
itus		Nbr person- night	8	8	8	24
res		HBR/night	4	1	1	2
fun		Total mosquitoes	11	7	5	23
Аn.	Outdoor	Nbr person	8	8	8	24
7	Outdoor	HBR/night	1	1	1	1
		Total mosquitoes	0	0	2	2
lis	Indoor	Nbr person- night	8	8	8	24
nlue		HBR/night	0	0	0	0
bc		Total mosquitoes	0	2	0	2
An.	Outdoor	Nbr person- night	8	8	8	24
		HBR/night	0	0	0	0
i		Total mosquitoes	1	1	0	2
An. nili	Outdoor	Nbr person- night	8	8	8	24
		HBR/night	0	0	0	0

TANGANYIKA PROVINCE, KALEMIE SITE (JANUARY - JUNE 2017)

Table 10: HBR of malaria vectors indoors and outdoors in the Kalemie site (January-February, March-April and May-June 2017)

Site		KALEMIE									
Method		HLC									
Period		January-J	une, 20	017							
Species	Area	a Variables Jan/ Mar/ May/ Jan Feb Apr June									
_:	or	Total mosquitoes	53	25	27	105					
e s.]	Indc	Nbr person-night	8	8	8	24					
bia	—	HBR/night	7	3	3	4					
jam	or	Total mosquitoes	66	0	11	77					
n. g	utdo	Nbr person-night	8	8	8	24					
4	Ol	HBR/night	8	0	1	3					
tus	or	Total mosquitoes	0	1	4	5					
An. nest	ndoc	Nbr person-night	8	8	8	24					
fu	П	HBR/night	0	0	1	0					

SUD KIVU PROVINCE, KATANA SITE (JANUARY- JUNE 2017)

Table 11: HBR of malaria vectors indoors and outdoors in the Katana site (January-February, March-April and May-June 2017)

Site	KATANA							
Period		January-June 2017						
Method			HLC	•				
Species	Area	Area Variables Jan/ Mar/ May/ Jan-June						

			Feb	Apr	June	
		Total mosquitoes	11	23	38	72
•	Indoor	Nbr person-night	8	8	8	24
e s.1		HBR/night	1	3	5	3
nbia		Total mosquitoes	4	7	0	11
gan	Outdoor	Nbr person-night	8	8	8	24
An.		HBR/night	1	1	0	0
	Indoor	Total mosquitoes	8	11	10	29
		Nbr person-night	8	8	8	24
SI		HBR/night	1	1	1	1
estu		Total mosquitoes	2	8	0	10
fun	Outdoor	Nbr person-night	8	8	8	24
An.		HBR/night	0	1	0	0
li		Total mosquitoes	0	1	0	1
ı. ni	Indoor	Nbr person-night	8	8	8	24
Ar		HBR/night	0	0	0	0

KINSHASA PROVINCE, KINGASANI SITE (JANUARY- JUNE 2017)

Table 12: HBR of malaria vectors indoors and outdoors in the Kingasani site (January-February, March-April and May-June 2017)

Site	KINGASANI									
Period		January – June 2017								
Method		HLC								
Species	Area	AreaVariablesJan/ FebMar/ AprMay/ JuneJan/June								
ga bi ae	Indoor	Indoor Total 21 21 21 63								

		Nbr person- night	8	8	8	24
		HBR/night	3	3	3	3
		Total mosquitoes	84	62	37	183
	Outdoor	Nbr person- night	8	8	8	24
L		HBR /night	11	8	5	8
		Total mosquitoes	1	2	9	12
stus	Indoor	Nbr person- night	8	8	8	24
nes		HBR /night	0	0	1	1
An. fu		Total mosquitoes	1	22	19	42
	Outdoor	Nbr person- night	8	8	8	24
		HBR /night	0	3	2	2

KASAI PROVINCE, MIKALAYI SITE (JANUARY- JUNE 2017)

Table 13: HBR of malaria vectors indoors and outdoors in the Mikalayi site (January-February, March-April and May-June 2017)

Sites		Mikalayi								
Period		January-June 2017								
Species	Area	Variables	Jan/ Feb	Mar/ Apr	May/ June	Jan/June				
	Indoor	Total mosquitoes	17	6	6	29				
<i>ae</i> s.1		Nbr person-night	8	8	8	24				
ambid		HBR/night	2	1	1	1				
An. go	Outdoor	Total mosquitoes	9	3	8	20				
	Ouldoor	Nbr person-night	8	8	8	24				

		HBR/night	1	0	1	1
		Total mosquitoes	200	8	38	246
Ş	Indoor	Nbr person-night	8	8	8	24
nestu		HBR/night	25	1	5	10
nf 'uy Outdoor	Total mosquitoes	76	3	16	95	
	Nbr person-night	8	8	8	24	
	HBR/night	10	0	2	4	
		Total mosquitoes	3	4	1	8
(0	Indoor	Nbr person-night	8	8	8	24
aludis		HBR/night	0	1	0	0
An. po		Total mosquitoes	3	3	3	9
7	Outdoor	Nbr person-night	8	8	8	24
		HBR/night	0	0	0	0

NEW SENTINEL SITES FOR 2017 (KARAWA, INONGO, KIMPESE, PAWA)

SUD UBANGI PROVINCE, KARAWA SITE (JANUARY- JUNE 2017)

Table 14: HBR of malaria vectors indoors and outdoors in the Karawa site (January-February, March-April and May-June 2017)

Site		Karawa								
Period	January-June 2017									
Method			HLC							
Species	Area	Variable	Jan/ Feb	Mar/ Apr	May/ June	Jan-June				
Ø		Total mosquitoes	81	193	131	405				
Dia	Indoor	Nbr person-night	8	8	8	24				
uml 1.		HBR/night	10	24	16	17				
ga s.		Total mosquitoes	56	187	78	321				
Аn.	Outdoor	Nbr person-night	8	8	8	24				
7		HBR/night	7	23	10	13				
ndo Indo		Total mosquitoes	1	0	0	1				
	Indoor	Nbr person-night	8	8	8	24				
		HBR/night	0	0	0	0				
hn. fui		Total mosquitoes	2	0	0	2				
	Outdoor	Nbr person-night	8	8	8	24				
7		HBR/night	0	0	0	0				
(0		Total mosquitoes	0	0	0	0				
dis	Indoor	Nbr person-night	8	8	8	24				
alu		HBR/night	0	0	0	0				
d.		Total mosquitoes	1	0	0	1				
An	Outdoor	Nbr person-night	8	8	8	24				
		HBR/night	0	0	0	0				
i		Total mosquitoes	0	0	0	0				
tan	Indoor	Nbr person-night	8	8	8	24				
isno		HBR/night	0	0	0	0				
U T		Total mosquitoes	1	0	0	1				
An	Outdoor	Nbr person-night	8	8	8	24				
		HBR/night	0	0	0	0				

MAI-NDOMBE PROVINCE, INONGO SITE (JANUARY- JUNE 2017)

Site		INONGO								
Per	riod		Janua	ary - June,	2017					
Met	hod		HLC							
Species	Area	Variables	Jan/	Mar/	May/	Total				
Species	Alca	Vallables	Feb	Apr	June	Jan-June				
		Total	14	01	10	54				
		mosquitoes	mosquitoes		19	34				
		Nbr person-	Q	8	Q	24				
e s.l.	00T	night	0		0	27				
biae	Indc	HBR/night	2	3	2	2				
m. gam	Total	7	30	22	59					
		mosquitoes	1	00	22	0,5				
4	door	Nbr person-	8	8	8	24				
		night	0	_	0					
	Out	HBR/night	1	4	3	2				
		Total	11	6	18	35				
		mosquitoes	11	0	10	00				
		Nbr person-	Q	0	0	04				
is	00r	night	0	0	0	24				
alud	Indc	HBR/night	1	1	2	1				
ı. pe		Total	22	8	22	52				
Aı		mosquitoes	44	0	22	52				
	ŗ	Nbr person-	8	8	8	24				
	oop	night		0	0					
	Dutc	HBR/night	3	1	3	2				

Table 15: HBR of malaria vectors indoors and outdoors in the Inongo site (January-February, March-April and May-June 2017)

KONGO CENTRAL PROVINCE, KIMPESE SITE (JANUARY- JUNE 2017) Table 16: HBR of malaria vectors indoors and outdoors in the Kimpese site (January-February, March-April and May-June 2017)

Site	Kimpese									
Period		Janu	lary-June,	2017						
Method	HLC									
Species	Area	Variable	Jan/	Mar/	May/	Jan-				
			Feb	Apr	June	June				
0)		Total mosquitoes	3	23	11	37				
iae	Indoor	Nbr person-night	8	8	8	24				
$mb_{.1}$		HBR/night	0	3	1	2				
ga		Total mosquitoes	11	15	11	37				
4 <i>п</i> .	Outdoor	Nbr person-night	8	8	8	24				
		HBR/night	1	2	1	2				
restus	Indoor	Total mosquitoes	235	338	199	772				
		Nbr person	8	8	8	24				
		HBR/night	29	42	25	32				
An. fui		Total mosquitoes	274	469	210	953				
	Outdoor	Nbr person-night	8	8	8	24				
7		HBR/night	34	59	26	40				
		Total mosquitoes	0	1	0	1				
dis	Indoor	Nbr person-night	8	8	8	24				
alu		HBR/night	0	0	0	0				
d .		Total mosquitoes	0	1	0	1				
An	Outdoor	Nbr person-night	8	8	8	24				
		HBR/night	0	0	0	0				
		Total mosquitoes	0	0	5	5				
	Indoor	Nbr person-night	8	8	8	24				
nil		HBR/night	0	0	1	0				
4 <i>n</i> .		Total mosquitoes	0	0	6	6				
7	Outdoor	Nbr person-night	8	8	8	24				
		HBR/night	0	0	0	0				

HAUT-UELE PROVINCE, PAWA SITE (JANUARY- JUNE 2017) Table 17: HBR of malaria vectors indoors and outdoors in the Pawa site (January-February, March-April and May-June 2017)

Sites	PAWA							
Period		Janua	ry-June	e 2017				
Method			HLC					
Species	Area	Variable	Jan/ Feb	Mar/ Apr	May/ June	Jan-June		
		Total mosquitoes	456	87	0	543		
e s.l.	Indoor	Nbr person-night	8	8	8	24		
lbiae		HBR/night	57	11	0	23		
gam		Total mosquitoes	699	62	0	761		
An.	Outdoor	Nbr person-night	8	8	8	24		
		HBR/night	87	8	0	32		
	Indoor	Total mosquitoes	2	0	0	2		
sn		Nbr person-night	8	8	8	24		
nest		HBR/night	0	0	0	0		
ı. fu		Total mosquitoes	2	0	0	2		
Aı	Outdoor	Nbr person-night	8	8	8	24		
		HBR/night	0	0	0	0		
		Total mosquitoes	1	0	73	74		
is	Indoor	Nbr person-night	8	8	8	24		
alud		HBR/night	0	0	9	3		
n. pu		Total mosquitoes	6	0	61	67		
Α	Outdoor	Nbr person-night	8	8	8	24		
		HBR/night	1	0	8	3		

INTENSITY OF PYRETHROID RESISTANCE OF AN. GAMBIAE S.L IN KINSHASA

TABLE 18: Results of resistance intensity bottle bioassays for An.gambiae s.l. in Kinshasa and Kasangulu to deltamethrin and permethrin(March 2017).

Sites	Insecticide	Concentration	Control Exposed	Control Died	Nbr Exposed (test)	Observed 30 min Mortality	Observations
KINGASANI	Deltamethrin	IX	50	0	100	67	R
KINGASANI		2X	50	0	100	94	R
KINGASANI		5X	50	0	100	100	S
KINGASANI		10X	50	0	100	100	S
KINGASANI	Permethrin	ıx	50	0	100	0	R
KINGASANI		2X	50	0	100	8	R
KINGASANI		5×	50	0	100	37	R
KINGASANI		10X	50	0	100	71	R
BU	Deltamethrin	IX	50	0	100	73	R
BU		2X	50	0	100	93	R
BU		5X	50	0	100	100	S
BU		10X	50	0	100	100	S
BU	Permethrin	IX	50	0	100	3	R
BU		2X	50	0	100	23	R
BU		5X	50	0	100	56	R
BU		10X	50	0	100	91	R
KINKOLE	Deltamethrin	іх	50	0	100	68	R
KINKOLE		2X	50	0	100	93	R
KINKOLE		5X	50	0	100	99	S
KINKOLE		10X	50	0	100	100	S
KINKOLE	Permethrin	IX	50	0	100	0	R
KINKOLE		2X	50	0	100	19	R
KINKOLE		5X	50	0	100	42	R
KINKOLE		10X	50	0	100	75	R
KIMPOKO	Deltamethrin	IX	50	0	100	54	R
KIMPOKO		2X	50	0	100	85	R
КІМРОКО		5X	50	0	100	100	S

КІМРОКО		10X	50	0	100	100	S
KIMPOKO	Permethrin	IX	50	0	100	I	R
KIMPOKO		2X	50	0	100	18	R
КІМРОКО		5X	50	0	100	62	R
КІМРОКО		10X	50	0	100	91	R
KASANGULU	Deltamethrin	IX	50	0	100	70	R
KASANGULU		2X	50	0	100	91	R
KASANGULU		5X	50	0	100	100	S
KASANGULU		10X	50	0	100	100	S
KASANGULU	Permethrin		50	0	100	2	R
		28	50	0	100	26	R
KASANGULU		52	50	0	100	83	R
KASANGULU		10X	50	0	100	95	R

Kasangulu, located 40 km outside Kinshasa, is the control area

Table 19: Results of resistance intensity bottle bioassays for An. gambiae s.l. in Kinshasa and Kasangulu to deltamethrin and permethrin (June – July 2017).

Sites	Insecticide	Concentration	Control Exposed	Control Died	Nbr Exposed (test)	Observed 30 min Mortality	Observations
KINGASANI	Deltamethrin	IX	50	0	100	44	R
KINGASANI		2X	50	0	100	85	R
KINGASANI		5X	50	0	100	100	S
KINGASANI		10X	50	0	100	100	S
KINGASANI	Permethrin	IX	50	0	100	0	R
KINGASANI		2X	50	0	100	I	R
KINGASANI		5X	50	0	100	15	R
KINGASANI		10X	50	0	100	38	R
BU	Deltamethrin	IX	50	0	100	36	R
BU		2X	50	0	100	69	R
BU		5X	50	0	100	98	S
BU		10X	50	0	100	100	S
BU	Permethrin	IX	50	0	100	0	R

BU		2X	50	0	100	0	R
BU		5X	50	0	100	3	R
BU		10X	50	0	100	10	R
KINKOLE	Deltamethrin	IX	50	0	100	37	R
KINKOLE		2X	50	0	100	74	R
KINKOLE		5X	50	0	100	94	R
KINKOLE		10X	50	0	100	100	S
KINKOLE	Permethrin	IX	50	0	100	0	R
KINKOLE		2X	50	0	100	0	R
KINKOLE		5X	50	0	100	13	R
KINKOLE		10X	50	0	100	31	R
KIMPOKO	Deltamethrin	IX	50	0	100	44	R
KIMPOKO		2X	50	0	100	79	R
KIMPOKO		5X	50	0	100	91	R
КІМРОКО		10X	50	0	100	100	s
KIMPOKO	Permethrin	IX	50	0	100	0	R
КІМРОКО		2X	50	0	100	0	R
КІМРОКО		5X	50	0	100	9	R
КІМРОКО		10X	50	0	100	37	R
KASANGULU	Deltamethrin	IX	50	0	100	14	R
KASANGULU		2X	50	0	100	33	R
KASANGULU		5X	50	0	100	79	R
KASANGULU		10X	50	0	100	100	S
KASANGULU	Permethrin	IX	50	0	100	0	R
KASANGULU		2X	50	0	100	0	R
KASANGUUU		5×	50	0	100		R
KASANGULU		10X	50	0	100	60	R

Kasangulu, located 40 km outside Kinshasa, is the control area

Table 20: Results of resistance intensity bottle bioassays for An. gambiae s.l. in Kinshasa and Kasangulu to deltamethrin and permethrin (October 2017).

Sites	Insecticide	Concen tration	Control Exposed	Control Died	Nbr Exposed (test)	Observed 30 min Mortality	Observations
KINGASANI	Deltamethrin	IX	40	0	80	9	R
KINGASANI		2X	40	0	80	34	R
KINGASANI		5X	40	0	80	98	S
KINGASANI		10X	40	0	80	100	S
KINGASANI	Permethrin	IX	40	0	80	0	R
KINGASANI		2X	40	0	80	0	R
KINGASANI		5X	40	0	80	41	R
KINGASANI		10X	40	0	80	50	R
BU	Deltamethrin	IX	40	0	80	40	R
BU		2X	40	0	80	54	R
BU		5X	40	0	80	80	R
BU		10X	40	0	80	90	R
BU	Permethrin	IX	40	0	80	0	R
BU		2X	40	0	80	5	R
BU		5X	40	0	80	6	R
BU		10X	40	0	80	28	R
KINKOLE	Deltamethrin	IX	40	0	80	36	R
KINKOLE		2X	40	0	80	55	R
KINKOLE		5X	40	0	80	81	R
KINKOLE		10X	40	0	80	100	S
KINKOLE	Permethrin	іх	40	0	80	0	R
KINKOLE		2X	40	0	80	20	R
KINKOLE		5X	40	0	80	63	R
KINKOLE		10X	40	0	80	66	R
KIMPOKO	Deltamethrin	IX	40	0	80	16	R
KIMPOKO		2X	40	0	80	34	R
КІМРОКО		5X	40	0	80	94	R
KIMPOKO		10X	40	0	80	100	S

KIMPOKO	Permethrin	IX	40	0	80	0	R
KIMPOKO		2X	40	0	80	14	R
KIMPOKO		5X	40	0	80	50	R
KIMPOKO		10X	40	0	80	74	P
	Data and da		40	0	00	14	
KASANGULU	Deltamethrin		40	0	80	46	ĸ
KASANGULU		2X	40	0	80	59	R
KASANGULU		5×	40	0	80	63	R
KASANGULU		10X	40	0	80	100	S
KASANGULU	Permethrin	IX	40	0	80	18	R
KASANGULU		2X	40	0	80	36	R
			40	0	80	50	P
KASANGULU		22	40	0	80	55	ĸ
KASANGULU		10X	40	0	80	91	R

Kasangulu located in 40 Km outside Kinshasa is the control area

TSHOPO PROVINCE, KABONDO SITE (JANUARY – JUNE 2017)

Table 21: Distribution and abundance	e of mosquitoes collected in Kabondo
by species and method (PSC and HLC	c) of collection

Site	Kabondo				
Period		January -	- June, 2017		
Species / Method	PSC	HLC Indoors	HLC Outdoors	Total	
	Januar	y – February, 2	2017		
An. gambiae s.l.	47(87%)	152 (84%)	107 (90%)	306 (86%)	
An. funestus s.l.	7(13%)	29 (16%)	11 (09%)	47 (13%)	
An. nili	0(0%)	0(0%)	1 (1%)	1 (0%)	
Total 1	54 (100%)	181 (100%)	119 (100%)	354 (100%)	
	Ma	rch-April 2017	7		
An. gambiae s.l.	81 (100%)	143 (93%)	150 (91%)	374 (93%)	
An. funestus s.l.	0 (0%)	11 (7%)	7 (6%)	18 (5%)	
An. paludis	0 (0%)	0 (0%)	2 (3%)	2 (1%)	
An. nili	0 (0%)	0 (0%)	1 (1%)	1 (0%)	
Total 2	81 (100%)	154 (100%)	160 (100%)	395 (100%)	
May-June 2017					
An. gambiae s.l.	225 (97%)	161 (96%)	90 (95%)	476 (96%)	
An. funestus s.l.	7 (3%)	5 (3%)	5 (5%)	17 (3%)	
An. paludis	0 (0%)	2 (1%)	0 (0%)	2 (0%)	

Total 3	232 (100%)	168 (100%)	95 (100%)	495 (100%)			
All three Periods : January-June 2017							
An. gambiae s.l.	353 (96%)	456 (91%)	347 (93%)	1156 (93%)			
An. funestus s.l.	14 (4%)	45 (9%)	23 (6%)	82 (7%)			
An. paludis	0 (0%)	2 (0%)	2 (1%)	4 (0%)			
An. nili	0 (0%)	0 (0%)	2(1%)	2 (0%)			
General Total	367 (100%)	503 (100%)	374 (100%)	1244 (100%)			

TANGANYIKA PROVINCE, KALEMIE SITE (JANUARY - JUNE 2017)

Table 22: Distribution and abundance of mosquitoes collected in Kalemie by species and method (PSC and HLC) of collection

Site	KALEMIE				
Period		January	June, 2017		
Species/Method	PSC	HLC Indoors	HLC Outdoors	Total	
	Januar	ry – February 2	017		
An. gambiae s.l.	28 (88%)	53 (100%)	66 (100%)	147 (97%)	
An. funestus s.l.	4 (12%)	0 (0%)	0 (0%)	4 (3%)	
Total 1	32 (100%)	53 (100%)	66 (100%)	151 (100%)	
	Ma	rch-April 2017			
An. gambiae s.l.	69 (87%)	25 (96%)	0 (0%)	94 (90%)	
An. funestus s.l.	9 (11%)	1 (4%)	0 (0%)	10 (10%)	
An. nili	1 (1%)	0 (0%)	0(0%)	1 (1%)	
	79 (100%)	26 (100%)	0 (%)	105 (100%)	
	Μ	ay-June 2017			
An. gambiae s.l.	33 (89%)	27 (87%)	11 (100%)	71 (90%)	
An. funestus s.l.	3 (8%)	4 (13%)	0 (0%)	7 (10%)	
An. salbaii	1 (3%)	0 (0%)	0 (0%)	1(0%)	
	37 (100%)	31 (100%)	11 (100%)	79 (100%)	
All three Periods : January-June 2017					
An. gambiae s.l.	130 (88%)	105 (95%)	77 (100%)	312 (93%)	
An. funestus s.l.	16 (11%)	5 (5%)	0 (0%)	21 (6%)	
An. nili	1 (1%)	0 (0%)	0 (0%)	1 (0%)	
An. salbaii	1 (1%)	0 (0%)	0 (0%)	1 (0%)	
General Total	148	110	77	335	

Tat	ole 23: Di	stribution a	and abundanc	e of mosquitoes	collected in	Katana
by :	species a:	nd method	(PSC and HLC	C) of collection		

Site	KATANA				
Period		January-	June 2017		
Species\Method	PSC	HLC Indoor	HLC Outdoor	Total	
January-February 2017					
An. gambiae s.1	28 (30%)	11 (58%)	4 (67%)	43 (36%)	
An. funestus s.l.	65 (70%)	8 (42%)	2 (33%)	75 (64%)	
Total 1	93 (100%)	19 (100%)	6 (100%)	118 (100%)	
	Marc	h-April 2017			
An. gambiae s.1.	44 (68%)	23 (66%)	7 (47%)	74 (64%)	
An. funestus s.l.	21 (32%)	11 (31%)	8 (53%)	40 (35%)	
An. nili	0 (0%)	1 (3%)	0 (0%)	1 (1%)	
Total 2	65 (100%)	35 (100%)	15 (100%)	115 (100%)	
	Мау	-June 2017			
An. gambiae s.1.	65 (80%)	38 (79%)	0 (0%)	113 (80%)	
An. funestus s.l.	16 (20%)	10 (21%)	0 (0%)	26 (20%)	
Total 3	81 (100%)	48 (100%)	0 (0%)	129 (100%)	
A	ll three Period	ls : January-J	une 2017		
An. gambiae s.1.	137 (57%)	72 (71%)	11 (52%)	220 (61%)	
An. funestus s.l.	102 (43%)	29 (28%)	10 (48%)	141 (39%)	
An. nili	0 (0%)	1 (1%)	0 (0%)	1 (0%)	
General Total	239 (100%)	102 (100%)	21 (100%)	362 (100%)	

Table 24: Distribution and abundance of mosquitoes collected in Kingasani by species and method (PSC and HLC) of collection

Site	KINGASANI			
Period	January-June 2017			
Species /Method	PSC	HLC Indoor	HLC Outdoor	Total
January-February 2017				

An. gambiae s.l.	68 (99%)	21 (95%)	84 (99%)	173 (98%)	
An. funestus s.l.	1 (1%)	1 (5%)	1 (1%)	3 (2%)	
Total 1	69 (100%)	22 (100%)	85 (100%)	176 (100%)	
	Mare	ch-April 2017			
An. gambiae s.l.	143 (89%)	21 (91%)	62 (74%)	226 (85%)	
An. funestus s.l.	17 (11%)	2 (9%)	22 (26%)	41 (15%)	
Total 2	160 (100%)	23 (100%)	84 (100%)	267 (100%)	
	Ма	y-June 2017			
An. gambiae s.l.	27 (37%)	21 (70%)	37 (66%)	85 (53%)	
An. funestus s.l.	46 (63%)	9 (30%)	19 (34%)	74 (47%)	
Total 3	73 (100%)	30 (100%)	56 (100%)	159 (100%)	
All three Periods : January-June 2017					
An. gambiae s.l.	238 (79%)	63 (84%)	183 (81%)	484 (80%)	
An. funestus s.l.	64 (21%)	12 (16%)	42 (19%)	118 (20%)	
General Total	302 (100%)	75 (100%)	225 (100%)	602 (100%)	

Table 25: Distribution and abundance of mosquitoes collected in Mikalayi by species and method (PSC and HLC) of collection

Site	MIKALAYI					
Period	January-June, 2017					
Species/Method	PSC HLC Indoor HLC Outdoor Tota					
	January-February 2017					
An. gambiae s.l.	8 (7%)	17 (8%)	9 (10%)	34 (8%)		
An. funestus s.l.	106 (93%)	200 (91%)	76 (86%)	382 (91%)		
An. paludis	0 (0%)	3 (1%)	3 (3%)	6 (1%)		
Total 1	114 (100%)	220 (100%)	88 (100%)	422 (100%)		
March-April 2017						

An. gambiae s.l.	3 (8%)	6 (33%)	3 (33%)	12 (19%)
An. funestus s.l.	33 (92%)	8 (44%)	3 (33%)	44 (70%)
An. paludis	0 (0%)	4 (22%)	3 (33%)	7 (11%)
Total 2	36 (100%)	18 (100%)	9 (100%)	63 (100%)
	May	-June 2017		
An. gambiae s.l.	20 (17%)	6 (13%)	8 (30%)	34 (18%)
An. funestus s.l.	97 (83%)	38 (84%)	16 (59%)	151 (80%)
An. paludis	0 (0%)	1 (2%)	3 (11%)	4 (2%)
Total 3	117 (100%)	45 (100%)	27 (100%)	189 (100%)
A	ll Three Period	ls : January-J	une 2017	
An. gambiae s.l.	31 (12%)	29 (10%)	20 (16%)	80 (12%)
An. funestus s.l.	236 (88%)	246 (87%)	95 (77%)	577(86%)
An. paludis	0 (0%)	8 (3%)	9 (7%)	17 (3%)
General Total	267 (100%)	283 (100%)	124 (100%)	674 (100%)

Table 26: Distribution and abundance of mosquitoes collected in Karawa by species and method (PSC and HLC) of collection

Site	Karawa				
Period		January-	June 2017		
Species/Method	Indoor PSC	HLC Indoor	HLC Outdoor	Total	
	Janua	ry-February 20	017		
An. gambiae s.l.	86 (99%)	81 (99%)	56 (93%)	223 (97%)	
An. funestus s.l.	1 (1%)	1 (1%)	2 (3%)	4 (2%)	
An. paludis	0	0	1 (2%)	1 (0%)	
An. coustani	0	0	1 (2%)	1 (0%)	
Total 1	87 (100%)	82 (100%)	60 (100%)	229 (100%)	
	Ma	rch-April 2017	,		
An. gambiae s.l.	27 (100%)	193 (100%)	187(100%)	407 (100%)	
Total 2	27 (100%)	193 (100%)	187 (100%)	407 (100%)	
May-June 2017					
An. gambiae s.l.	31 (100%)	131 (100%)	78 (100%)	240 (100%)	

Total 3	31 (100%)	131 (100%)	78 (100%)	240 (100%)		
All three Periods : January-June 2017						
An. gambiae s.l.	144 (99%)	405 (99%)	321 (99%)	870(99%)		
An. funestus s.l.	1 (1%)	1 (1%)	2 (1%)	4(1%)		
An. paludis	0	0	1(0%)	1(0%)		
An. coustani	0	0	1(0%)	1(0%)		
General Total	145	406	325	876		

Table 27: Distribution and abundance of mosquitoes collected in Inongo by species and method (PSC and HLC) of collection

Site		INONGO			
Period		January -	June, 2017		
Species/Method	PSC	HLC Indoors	HLC Outdoors	Total	
	Janua	ary-February 2	017		
An. gambiae s.l.	28(100%)	14(56%)	7(24%)	49(60%)	
An. paludis	0(0%)	11(44%)	22(76%)	33(40%)	
Total 1	28 (100%)	25 (100%)	29 (100%)	82 (100%)	
	Ma	arch-April 201	7		
An. gambiae s.l.	65(97%)	21(78%)	30(79%)	116 (88%)	
An. funestus s.l.	2 (3%)	0(0%)	0(0%)	2 (2%)	
An. paludis	0(0%)	6(22%)	8(21%)	14 (11%)	
Total 2	67 (100%)	27 (100%)	38 (100%)	132 (100%)	
	Μ	lay-June 2017			
An. gambiae s.l.	188(99%)	19(51%)	22(50%)	229(85%)	
An. paludis	1(1%)	18(49%)	22(50%)	41(15%)	
Total 3	189 (100%)	37 (100%)	44 (100%)	270 (100%)	
All three Periods : January-June 2017					
An. gambiae s.l.	281 (99%)	54(61%)	59(53%)	394(81%)	
An. funestus s.l.	2 (1%)	0(0%)	0(0%)	2(0%)	
An. paludis	1 (0%)	35(39%)	52(47%)	88(18%)	
General Total	284 (100%)	89 (100%)	111 (100%)	484 (100%)	

Site	KIMPESE						
Period	January-June, 2017						
Species/Method	PSC	HLC Indoor	HLC Outdoor	Total			
January-February 2017							
An. gambiae s.l.	2 (2%)	3 (1%)	11 (4%)	16 (2%)			
An. funestus s.l.	129 (98%)	235 (99%)	274 (96%)	638 (98%)			
Total 1	131 (100%)	238 (100%)	285 (100%)	654 (100%)			
March-April 2017							
An. gambiae s.1.	3 (8%)	23 (6%)	15 (3%)	41 (5%)			
An. funestus s.l.	37 (93%)	338 (93%)	469 (97%)	844 (95%)			
An. paludis	0 (0%)	1 (0%)	1 (0%)	2 (0%)			
Total 2	40 (100%)	362 (100%)	485 (100%)	887 (100%)			
May-June 2017							
An. gambiae s.l.	1 (2%)	11 (5%)	11 (5%)	23 (5%)			
An. funestus s.l.	59 (97%)	199 (93%)	210 (93%)	468 (93%)			
An. nili	1 (1%)	5 (2%)	6 (3%)	12 (2%)			
Total 3	61 (100%)	215 (100%)	227	503			
All three Periods : January-June 2017							
An. gambiae s.l.	6 (3%)	37 (5%)	37 (4%)	80 (4%)			
An. funestus s.l.	225 (97%)	772 (95%)	953 (96%)	1950 (95%)			
An. paludis	0 (0%)	1 (0%)	1 (0%)	2 (0%)			
An. nili	1(0%)	5 (1%)	6 (1%)	12 (1%)			
General Total	232	815	997	2044			

Table 28: Distribution and abundance of mosquitoes collected in Kimpese by species and method (PSC and HLC) of collection

Table 29: Distribution and abundance of mosquitoes collected in Pawa by species and method (PSC and HLC) of collection

Site	PAWA						
Period	January-June 2017						
Species/Methods	PSC	HLC Indoor	HLC Outdoor	Total			
January-February 2017							
An. gambiae s.l.	464 (99%)	456 (99%)	699 (99%)	1619 (99%)			
An. funestus s.l.	3 (1%)	2 (0%)	2 (0%)	7 (0%)			
An. paludis	0 (0%)	1 (0%)	6 (1%)	7 (0%)			
Total 1	467 (100%)	459 (100%)	707 (100%)	1633 (100%)			
March-April 2017							
An. gambiae s.1.	78 (95%)	87 (100%)	62 (100%)	227 (98%)			
An. funestus s.l.	3 (4%)	0 (0%)	0 (0%)	3 (1%)			
An. paludis	1 (1%)	0 (0%)	0 (0%)	1 (0%)			
Total 2	82 (100%)	87 (100%)	62 (100%)	231 (100%)			
May-June 2017							
An. gambiae s.l.	1 (1%)	0 (0%)	0 (0%)	1 (0%)			
An. funestus s.l.	3 (3%)	0 (0%)	0 (0%)	3 (1%)			
An. paludis	105 (96%)	73 (100%)	61 (100%)	239 (98%)			
Total 3	109 (100%)	73 (100%)	61 (100%)	243 (100%)			
All three Periods : January-June 2017							
An. gambiae s.l.	543 (83%)	543 (88%)	761 (92%)	1847 (88%)			
An. funestus s.l.	9 (1%)	2 (0%)	2 (0%)	13 (1%)			
An. paludis	106 (16%)	74 (12%)	67 (8%)	247 (12%)			
General Total	658 (100%)	619 (100%)	830 (100%)	2107 (100%)			

BLOOD DIGESTION STATE OF MALARIA VECTORS COLLECTED USING PSC

Table 30: Abdominal status of malaria vectors collected resting indoors through PSC (January-June 2017)

Sentinel site &	Abdominal status					
species	Unfed	Fed	Half	Gravid	τοται.	
Kabondo	omeu	reu	graviu	Glaviu	TOTAL	
An aambiaes1	100 (28%)	140 (40%)	60 (17%)	53 (15%)	353	
An functus s 1	5 (36%)	6 (43%)	1 (7%)	2(14%)	14	
An. junestus s.i.	5 (5076)	0 (4370)	1 (770)	2 (1470)	14	
Kalemie						
An. gambiae s.l.	11 (8%)	111 (85%)	3 (2%)	5 (4%)	130	
An. funestus s.l.	1 (6%)	14 (88%)	0	1 (6%)	16	
Katana						
An. gambiae s.l.	103 (75%)	33 (24%)	1 (1%)	0	137	
An. funestus s.l.	44 (43%)	53 (52%)	4 (4%)	1 (1%)	102	
Kingasani						
An. gambiae s.1.	117 (49%)	81 (34%)	34 (14%)	6 (3%)	238	
An. funestus s.l.	5 (8%)	53 (83%)	6 (9%)	0	64	
Mikalayi						
An. gambiae s.l.	5 (16%)	25 (81%)	1 (3%)	0	31	
An. funestus s.l.	56 (24%)	170 (72%)	8 (3%)	2 (1%)	236	
Karawa						
An. gambiae s.1.	50 (35%)	66 (46%)	18 (13%)	10 (7%)	144	
An. funestus s.l.	0	1 (50%)	1 (50%)	0	2	
Inongo	9 (20/)	020 (820/)	7(20/)	22(100/)	080	
An. gambiae s.i. An funestus s l	8 (3%) 1 (50%)	232 (83%)	7 (3%) 0	33 (12%) 0	280	
Kimpese	2 (0070)	2 (0070)			_	
An. gambiae s.1.	2 (33%)	4 (67%)	0	0	6	
An. funestus s.l.	78 (35%)	135 (60%)	8 (6%)	4 (2%)	225	
Pawa						
An. gambiae s.l.	282 (52%)	162 (30%)	59 (11%)	40 (7%)	543	
An. funestus s.l.	6 (67%)	3 (33%)	0	0	9	

The abdominal status of malaria vectors collected by PSC between January and June 2017 is presented in Table 15. In all sites, the majority of *An. gambiae* s.l. and *An. funestus* s.l. collected by PSC were blood-fed (24-88%), with <18% being either half-gravid or gravid.

MONTHLY MONITORING OF ABDOMINAL STATUS FOR MALARIA VECTORS CAUGHT RESTING INDOORS BY PSC

In Kapolowe, the majority of captured *An. gambiae* s.l. and *An. funestus* s.l. were blood-fed (75%). In Lodja, the majority of *An. gambiae* s.l. and *An. funestus* s.l. captured by PSC indoors between January and December were either unfed (32%) or blood-fed (63%), with very few half-gravid (4%) or gravid (1%) females.

Table 31: Monthly indoor resting density of *Anopheles* species in Kapolowe (Haut Katanga) from PSC collections (10 houses per month).

Site	Kapolowe						
Species	Unfed	Blood-fed Half-Gravid		Gravid	Total PSC		
TOTAL January-December 2017							
An. gambiae s.l.	9 (8%)	73 (68%)	26 (24%)	0	108		
An. funestus s.l.	52(12%)	324 (76%)	47 (11%)	1 (<1%)	424		
Total	61 (11%)	397 (75%)	73 (14%)	1 (<1%)	532		

Table 32: Monthly indoor resting density of *Anopheles* species in Lodja (Sankuru) from PSC collections (10 houses per month).

Site	LODJA					
Method PSC	Blood feeding					
Species	Unfed Fed Half-gravid Gravid Total PSC					
TOTAL: January – December 2017						
An. gambiae s.1.	125 (33%)	235 (62%)	17 (4%)	3 (1%)	380	
An. funestus s.l.	4 (18%)	17 (77%)	1 (5%)	0	22	
An. paludis	1 (17%)	5 (83%)	0	0	6	
General Total	130 (32%)	257 (63%)	18 (4%)	3 (1%)	408	