

U.S. PRESIDENT'S MALARIA INITIATIVE

PMI VECTORLINK CÔTE D'IVOIRE 2019 ANNUAL ENTOMOLOGICAL REPORT APRIL 2019–DECEMBER 2019

Recommended Citation: The PMI VectorLink Côte d'Ivoire 2019 Annual Entomological Report, April–December 2019. Rockville, MD. The PMI VectorLink Project, Abt Associates.

Contract: AID-OAA-I-17-00008

Task Order: AID-OAA-TO-17-00027

Submitted to: United States Agency for International Development/PMI

Submitted on: 31 March 2020

Approved on: 22 May 2020

Abt Associates | 6130 Executive Blvd | Rockville, Maryland 20814 T. 301.347.5000 | F. 301.913.9061 | abtassociates.com

CONTENTS

Acr	onyn	ns		iii					
Exe	ecutiv	ve Sum	mary	iv					
١.	Introduction1								
2.	Methodology								
	2.1 2.2 2.3 2.4	Entom Vector Insection Molecu	nological Monitoring Sites Bionomics Monitoring cide Resistance Monitoring ular characterization	2 3 4 5					
3.	Res	ults		6					
	3.1	Vector 3.1.1 3.1.2	Bionomics monitoring Species Composition Biting Cycle of <i>An. gambiae</i> s.l.	6 6					
		3.1.3	Molecular Species Identification of adults <i>An. gambiae</i> s.l. Collected through	1					
			Bionomics monitoring	14					
		3.1.4	Indoor Resting Density	15					
		3.1.5	Parity Rate	16					
		3.1.6	Plasmodium Falciparum Sporozoite Rates	17					
		3.1.7	Entomological Inoculation Rate						
		3.1.8	Human blood index						
	3.2 3.3	Insection Molection 3.3.3	cide Resistance Monitoring ular Markers of Resistance Molecular Species Identification of adult <i>An. gambiae</i> s.l. Tested for Suscept	19 24 ibility24					
4.	Con	clusior	٦	26					
An	nex			28					
Ref	eren	ces		41					

LIST OF TABLES

Table 1: Longitudinal Monitoring Collection Methods	3
Table 2: Vector Surveillance Indicators Per Collection Method	4
Table 3: Number of Mosquitoes Collected in All Sites Using the Three Collection Methods	6

Table 4: Vector Sporozoite Infection Rate in the Four Vector Bionomics Sites	. 18
Table 5: EIR of Malaria Vectors Collected Using HLC in the Four Vector Bionomics sites	18
Table 6: Human Blood Index of An. gambiae s.l. by Site	.19
Table 7: Insecticide Susceptibility test results in 15 sites	20
Table 8: Species Composition Of Mosquitoes Collected in Béoumi using the Three Collection Methods	.28
Table 9: Species Composition of Mosquitoes Collected in Dabakala using the Three Collection Methods	29
Table 10: Species Composition of Mosquitoes Collected in Nassian using the Three Collection Methods	30
Table 11: Species Composition of Mosquitoes Collected in Sakassou using the Three Collection Methods	31
Table 12 : Monthly Biting Rate Results Using HLC	32
Table 13: Biting Behavior of An. gambiae s.l. Per Site	33
Table 14: Percentage of Blood-Fed An. gambiae s.l. Collected Using PSC	34
Table 15: Monthly Parity Rates of Dissected Mosquitoes Per Site	35
Table 16: Monthly Parity Rates Of Dissected Mosquitoes Form Indoor and Outdoor Collections	36
Table 17: Monthly Sporozoite and EIRs of the Four Districts of Bionomic Survey	37
Table 18: Elisa Blood Feeding (Blood origin) in Four Districts of Vector Bionomic Survey	38
Table 19: Species Identification in the Four Districts of Bionomic Survey	38
Table 20: Frequencies of Kdr-West in Mosquitoes	39
Table 21: Frequencies of Kdr-East in Mosquitoes	39
Table 22: Frequencies of ACE-1 in Mosquitoes	40

LIST OF FIGURES

Figure 1: Map of Côte D'ivoire Showing the 2019 Pmi Vectorlink Entomological Monitoring Sites	2
Figure 2: Species Composition of the anopheles Mosquitoes Collected in the Four Sites using HLC, PSC, and	b
CDC Light Traps from April through December 2019	7
Figure 3: Species Composition of the anopheles Mosquitoes Collected in Béoumi using HLC, PSC, and CDC	2
Light Trap from May through December 2019	8
Figure 4: Species Composition of the anopheles Mosquitoes Collected in Dabakala using HLC, PSC, and CD	Ю
Light Traps from May through December 2019	9
Figure 5 : Species Composition of the anopheles Mosquitoes Collected in Nassian using HLC, PSC, and CDO	С
Light Traps from May through December 2019	.10
Figure 6: Species Composition of the anopheles Mosquitoes Collected in Sakassou using HLC, PSC, and CD	PC-
Light Trap from April through December 2019	.11
Figure 7: Anopheles gambiae s.l. Biting Rate using HLC at All Sites	. 12
Figure 8: Biting Rate and Cycle of An. gambiae s.l. Collected using HLC in Béoumi	. 12
Figure 9: Biting Rate and Cycle of An. gambiae s.l. Collected using HLC in Dabakala	.13
Figure 10: Biting Rate and Cycle of An. gambiae s.l. Collected using HLC in Nassian	.13
Figure 11: Biting rate and cycle of An. gambiae s.l. collected using HLC in Sakassou	.14
Figure 12: Proportion of An. gambiae s.l. per Collection Methods in the Bionomic Monitoring Sites	.15
Figure 13: Mean Indoor Resting Density of An. gambiae s.l. by Month and by Site	.16
Figure 14: Parity Rate of An. gambiae s.l. Collected using HLC	.17
Figure 15: Susceptibility of An. gambiae s.l. to Chlorfenapyr 100µg/Bottle by Site	. 22
Figure 16: Susceptibility of An. gambiae s.l. to Chlorfenapyr 200µg/Bottle by Site	. 23
Figure 17: Susceptibility of An. gambiae s.l. to Clothianidin by Site	. 23
Figure 18: Distribution of Target Site Mutations in An. gambiae s.l in All Sites Tested for Insecticide	
Resistance in Côte d'Ivoire	. 24
Figure 19: Proportion of An. gambiae s.l. used for susceptibility Test across the 15 Districts	. 25

ACRONYMS

ace-1	Acetylcholinesterase
bph	bites per person per hour
bpn	bites per person per night
CDC	Centers for Disease Control and Prevention
EIR	entomological inoculation rate
frd	females per room per day
DDT	dichlorodiphenyltrichloroethane
HBR	human biting rate
HLC	human landing catch
IRS	indoor residual spraying
ITN	insecticide-treated net
kdr	knockdown resistance
NMCP	National Malaria Control Program
РВО	Piperonyl butoxide
PMI	President's Malaria Initiative
PSC	pyrethrum spray catch
WHO	World Health Organization

EXECUTIVE SUMMARY

From April through December 2019, the U.S. President's Malaria Initiative (PMI) Project in Côte d'Ivoire, through its subcontractor Centre Suisse de Recherche Scientifiques, conducted malaria vector surveillance in four sites and insecticide resistance monitoring in 15 sites in Côte d'Ivoire.

Monthly longitudinal vector monitoring was conducted from April through December 2019 in four districts (i.e., sites) identified by the National Malaria Control Program (NMCP) in collaboration with PMI VectorLink. This included two sites scheduled to receive indoor residual spraying (IRS) in 2020 (Nassian and Sakassou), and two control sites (Béoumi and Dabakala). Three different methods were used to collect adult mosquitoes, including human landing catch (HLC), pyrethrum spray catch (PSC), and Centers for Disease Control and Prevention (CDC) light traps. The entomological parameters assessed were vector composition, seasonality, distribution, biting and resting behaviour, sporozoite infection, parity, and entomological inoculation rate (EIR).

In addition, insecticide susceptibility tests, resistance intensity tests, and synergist assays were conducted in 15 sites, including the four vector surveillance sites and an additional 11 sites (Abengourou, Aboisso, Adzopé, Bettié, Bouaké, Bouna, Daloa, Gagnoa, Odienné, San Pedro, and Yamoussoukro). World Health Organization (WHO) susceptibility tube tests and CDC bottle assays were used to test the local malaria vectors against different insecticides used in public health efforts.

Species composition across all longitudinal monitoring sites showed that *An. gambiae* s.l. was the predominant malaria vector, representing 84.5% (n=79,246) of the total *Anopheles* collected. The overall *An. gambiae* s.l. female biting activities were highest between 10:00 p.m. and 3:00 a.m. during the nine months of collection, both indoors and outdoors, in all four sites.

The highest human biting rate (HBR) was recorded in Sakassou, with an overall rate ranging from 97.5 to 230 bites per person per night (bpn) during the collection period. Parity rates were high in all sites, ranging from 65.3% in Dabakala to 92.5% in Nassian. Indoor resting densities of *An gambiae* s.l. recorded during PSC collections were highest in Dabakala—up to 35 females per room per day (frd)— and lowest in Nassian (0 to 6 frd).

Resistance was observed in *An. gambiae* s.l. to the diagnostic dose of all pyrethroids and bendiocarb in all sites surveyed for insecticide resistance monitoring. Susceptibility to the diagnostic dose of pirimiphos-methyl was observed in 10 sites, while the 5 other sites recorded low resistance. Pre-exposure to piperonyl butoxide did not yield full susceptibility to pyrethroids, but induced a substantial increase in mortality in nine of the 15 sites when combined with deltamethrin only (43.2% on average), and less so with alpha-cypermethrin (30%) and permethrin (22.8%). That suggests that deltamethrin + piperonyl butoxide insecticide-treated nets (ITNs) may be the most appropriate type of ITN in these areas. *An. gambiae* s.l. was susceptible to chlorfenapyr in one of the 15 sites at the dose of 100 μ g/bottle, and in nine of the sites at the dose of 200 μ g/bottle. For clothianidin, susceptibility was observed in seven out of 15 sites seven days post-exposure.

Molecular characterization of mosquitoes collected for insecticide susceptibility testing indicated that *An. coluzzii* represented the predominant species in all sites except in Nassian, Bouna, Odienné, Bouaké, and Yamoussoukro. One hundred percent of the population of Nassian, Bouna, and Odienné were *An. gambiae* s.s., while the population of Daloa Gagnoa and Sakassou were entirely *An. coluzzii*. A few hybrids of the two species were found in Yamoussoukro (2.9%) and San Pedro (1.9%).

Among adult mosquitoes collected in the four longitudinal monitoring sites, *An. coluzzii* were predominant in Béoumi and Dabakala, regardless of the collection method. *An. coluzzii* was the only species identified in Sakassou, while *An. gambiae* s.s. was the only vector identified in Nassian. A few hybrid *An. coluzzii*/*An. gambiae* s.s. were identified in Béoumi.

Both knockdown-resistant- (*kdr*-) West and East mutations were present in all sites except Nassian and Odienné. That is consistent with the high resistance to pyrethroids previously observed in Côte d'Ivoire. The acetylcholinesterase (*ace-1*) target site mutation observed in all sites was also consistent with phenotypic resistance to bendiocarb in all sites and to pirimiphos-methyl in some sites. These findings suggest that clothianidin-based products may be an appropriate insecticide for IRS in the targeted sites. Based on the susceptibility status of vector populations, pirimiphos-methyl-based products could be considered for IRS in other districts or for insecticide rotation in Nassian. Furthermore, piperonyl butoxide synergist ITNs and dual-active-ingredient ITNs (e.g., Interceptor G2) should be considered for insecticide resistance management in the country.

۷

I. INTRODUCTION

Malaria is a leading cause of morbidity and mortality in Côte d'Ivoire. It accounts for about 33% of outpatient visits in health facilities, with an incidence of 134 per 1,000 in the general population and 247 per 1,000 among children under 5, according to the 2017 NMCP report. To reduce the malaria burden, the main malaria vector control method used in Côte d'Ivoire is the distribution and use of ITNs through mass campaigns and routine distribution. Since the country started ITN mass and routine distributions, only pyrethroid-based ITNs have been distributed there. The National Malaria Strategic Plan 2016–2020 prioritized IRS as an additional vector control method to reduce malaria morbidity and mortality.

In 2019, VectorLink Côte d'Ivoire, in collaboration with the Centre Suisse de Recherche Scientifiques (the subcontractor) and all local entomological research institutes, conducted its second consecutive year of insecticide susceptibility testing of *An. gambiae* s.l. in 15 sites across the country, and longitudinal entomological surveillance in four sites selected by the NMCP. The data collected aimed to support the NMCP and the malaria vector control stakeholders (including PMI VectorLink) in determining the optimal timing and insecticides for IRS programming and to inform the selection of ITNs for future net distribution campaigns.

2. METHODOLOGY

From April through December 2019, VectorLink Côte d'Ivoire conducted longitudinal entomological surveillance in four sites selected by the National Malaria Control Program (NMCP,) and insecticide resistance monitoring in 15 sites including the four longitudinal monitoring sites.

2.1 ENTOMOLOGICAL MONITORING SITES

VectorLink Côte d'Ivoire conducted comprehensive monitoring (vector surveillance and insecticide resistance monitoring) in two sites targeted to receive IRS in 2020 (Nassian and Sakassou) and two control sites (Béoumi and Dabakala) and insecticide resistance monitoring only) in 11 additional sites including Abengourou, Aboisso, Adzope, Bettie, Bouaké, Bouna, Daloa, Gagnoa, Odienné, San Pedro, and Yamoussoukro (Figure 1).

FIGURE 1: MAP OF CÔTE D'IVOIRE SHOWING THE 2019 PMI VECTORLINK ENTOMOLOGICAL MONITORING SITES

 PMI-supported comprehensive vector monitoring sites (two IRS districts + two control)
 PMI-supported insecticide resistance monitoring sites (12)

2.2 VECTOR BIONOMICS MONITORING

Adult mosquitoes were collected via HLC, PSC, and CDC light traps. HLCs were conducted during two consecutive nights in four houses per site per month: two urban, two rural, at a minimum of five km from the town. The PSCs were conducted in 30 houses (15 urban and 15 rural) per site per month. The CDC light trap collections were performed in four different houses from HLCs (two urban and two rural) during two consecutive nights per site per month. The same houses were maintained for HLC and CDC light trap collections throughout the longitudinal monitoring, while randomly selected houses were used each month for PSC collections depending on the availability of households. Collections were conducted every month from April through December 2019, representing nine months of collection. The collection times and sampling methods are shown in Table 1.

Collection Method	Time	Frequency	Sample
HLC	6:00 p.m. to 6:00 a.m.	Two nights per site per month	Four houses per site (two urban and two rural); same houses each month
PSC	6:00 am to 8:00 a.m.	Two days per site per month	30 houses per site (15 urban and 15 rural)
CDC light trap	6:00 p.m. to 6:00 a.m.	Two nights per site per month	Four houses per site (two urban and two rural; same houses each month)

TABLE 1: LONGITUDINAL MONITORING COLLECTION METHODS

HLCs were performed indoors and outdoors to collect adult mosquitoes landing on human baits. With legs exposed to attract host-seeking mosquitoes, one human bait (mosquito collector) was seated indoors and another one outdoors. The collectors switched between indoors and outdoors each hour, basis to control for potential differences in attractiveness. The doors of the houses were kept closed when collections were under way. The collectors used flashlights and hemolysis tubes to collect mosquitoes that landed on their legs, before they could be bitten. The tubes were covered with cotton after individual collection of mosquitoes. The teams transferred the mosquitoes hourly to custom-made labelled bags, over 12 hours.

The PSCs were carried out between 6:00 a.m. and 8:00 a.m. White sheets were placed on the floor from wall to wall in sampled rooms. The rooms were sprayed with the commercial pyrethroid and piperonyl butoxide (PBO) insecticide, after closing the house's windows and doors and removing drinking water and food items from the room. For houses with open eaves, collectors sprayed from the outside through the eaves before entering and spraying indoors. Ten minutes after spraying, all mosquitoes knocked down by the chemical were collected from the white sheets. The mosquitoes were kept in Petri dishes and then sorted by species using an identification key (Gillies and Coetzee 1987). The abdominal status of all female anophelines was determined and sorted into four categories: unfed, blood-fed, half-gravid, and gravid.

CDC light traps were installed indoors in selected houses where people slept under an ITN. The CDC light traps were suspended in a bedroom 1.5 meters above the floor, above the sleeper's legs. Traps were set from 6:00 p.m. to 6:00 a.m. to ensure that surveillance was conducted during the suspected peak host-seeking periods.

All mosquitoes collected through each method were morphologically identified to genus. *Anopheles* mosquitoes were identified to species or species complex by microscope, using identification keys (Gillies and Coetzee 1987). The identification was done by a team of well-trained technicians from research institutes and VectorLink staff. A subsample of *An. gambiae* s.l. from each site was dissected to estimate parity rate. All mosquitoes were preserved on silica gel in Eppendorf tubes for further laboratory processing to identify

sibling species, resistance mechanisms, infection status, and source of blood meal, using polymerase chain reaction and enzyme-linked immunosorbent assay.

The indicators listed in Table 2 were calculated based on the number of mosquitoes collected through each collection method.

Collection Method	Indicator	Definition			
HLC	HBR	Mean number of bpn			
	Peak biting time	Hour of highest HBR			
Parity rate P		Percentage of parous mosquitoes/total dissected			
	Exophagic rate	Percentage of mosquitoes biting outside			
	Endophagic rate	Percentage of mosquitoes biting inside			
PSC	Indoor resting density	Mean number of mosquitoes/house/day			
	% of fed females	Number of fed mosquitoes/total collected by PSC			
CDC light trap	Indoor density	Mean number of mosquitoes collected indoors/trap/night			

TABLE 2: VECTOR SURVEILLANCE INDICATORS PER COLLECTION METHOD

2.3 INSECTICIDE RESISTANCE MONITORING

From June through August 2019, VectorLink Côte d'Ivoire completed insecticide resistance monitoring in 15 sites across the country including the four longitudinal monitoring sites (Figure 1). Larvae and pupae of *An. gambiae* s.l. were collected in each site from several larval habitats, pooled, and reared to adulthood in the field laboratory. Insecticide susceptibility tests were conducted on two- to five-day-old adult females using WHO tube tests and CDC bottle assays.

For each tube test, about 100 female *An. gambiae* s.l. were tested against the insecticide (in 4 batches of 25) and an additional 40–50 were tested in two control tubes (20–25 each) in parallel.

The diagnostic concentrations of permethrin (0.75%), deltamethrin (0.05%), alpha-cypermethrin (0.05%), bendiocarb (0.1%), and pirimiphos-methyl (0.25%) were tested in all sites. Resistance was defined following the WHO criteria (WHO, 2016):

98% or greater mortality indicates susceptibility

- *between* 90 and 98% mortality indicates possible resistance
- *less than* 90% mortality indicates confirmed resistance

When insecticide resistance was confirmed, resistance intensity (high, moderate, and low) was also tested at 5 and 10 times the diagnostic concentration of permethrin, deltamethrin, alpha-cypermethrin, and pirimiphosmethyl.

Clothianidin papers (13.2 mg/paper) were treated locally using a protocol designed by VectorLink. The susceptibility testing was conducted as described above, and the mortality was recorded up to seven days post-exposure.

Synergist assays with PBO were conducted for deltamethrin, permethrin, and alpha-cypermethrin according to the WHO tube test protocol to determine the involvement of cytochrome P450s in pyrethroid resistance. A high percent mortality and/or reversal of susceptibility when pre-exposed to PBO indicates probable involvement of enzymes such as P450s in the resistance mechanism.

CDC bottle assays were conducted using chlorfenapyr at the doses of 100µg/bottle and 200µg/bottle. Testing was done following the protocol of Brogdon and Chan (2010), but the exposure time was one hour, and mortality was recorded every 24 hours up to 3 days (72 hours).

2.4 MOLECULAR CHARACTERIZATION

Insecticide resistance in mosquitoes can be related to target-site mutations. Among these, resistance to pyrethroids and dichlorodiphenyltrichloroethane [i.e., DDT] is described as a substitution of the amino acid leucine with either phenylalanine (L1014F, referred as knockdown rate (*kdr*) -West) or serine (L1014S, referred to as *kdr*-East) at the position 1014 in the sodium channel gate. For organophosphate and carbamate insecticide, the target site mechanism, known as *ace-1*, is a substitution of an amino acid glycine to serine at position 119.

About 50 *An. gambiae* s.l. mosquitoes were randomly selected from each of the 15 sites among the dead and surviving mosquitoes from the WHO susceptibility tests, and further analyzed to identify species and assess molecular markers of insecticide resistance. In the four longitudinal monitoring sites, a subsample of about 400, 100, and 100 females per site was preserved from the HLC, PSC, and CDC-light trap collections, respectively, to determine subspecies of *An. gambiae* s.l. The DNA of each individual mosquito was extracted using the protocol designed by Collins et al., 1987. *An. gambiae* complex species were identified as *An. gambiae*, *An. Coluzzii*, or hybrids of the two species, following the Short Interspersed Element protocol described by Santolamazza et al. (2008). The presence of *kdr*-West and East was characterized using the Taqman protocol described by Bass et al. (2007).

The sporozoite infection status of a subsample of mosquitoes collected by HLC from each site was determined using the enzyme-linked immunosorbent assay protocol for identification of *Plasmodium falciparum* circumsporozoite infection. The blood sources of blood fed female *An. gambiae* s.l. collected using PSC were examined using ELISA protocol to determine the human blood index.

3.1 VECTOR BIONOMICS MONITORING

Vector bionomics activities were conducted in the two IRS targeted and two control sites during nine consecutive months. Vector species composition, density and behavior were collected per sites.

3.1.1 SPECIES COMPOSITION

OVERALL SPECIES COMPOSITION

A total of 93,748 mosquitoes, 10% (n=9,404) of which were culicines, were collected over nine months (April through December 2019) using the three collection methods described above. *An. gambiae* s.l. (n=79,246; 84.5%) was the most predominant malaria vector species, representing 94.0% of the total *Anopheles* mosquitoes collected across all sites and methods (n=84,344; Table 3). *An. funestus* s.l. represented 2% (n=1,655) and *An. nili* represented 0.7% (n=574) of all mosquitoes collected. The other *Anopheles* species represented 3.4% (n=2,869) and were composed primarily of *An. pharoensis*.

A total of 75,026 mosquitoes were collected by HLC. *An. gambiae* s.l. was the most collected malaria vector species (94.8%; n=66,635), followed by *An. funestus* s.l. (1%; n=717) and *An. nili* (0.6%; n=440) across all sites during the nine months. The other *Anopheles* species found was *An. pharoensis* (3.5%, n= 2.477) (Figure 2; Annex Tables 8–11). Culicine mosquitoes represented 6.3% (n=4,757) of the total mosquitoes caught using HLCs.

A total of 12,274 mosquitoes were collected by PSC. An. gambiae s.l. represented 84.4% (n=7,934) of the total Anopheles collected (n=9,398), all sites included. An. funestus s.l. and An. nili represented the other malaria vector species recorded, at 10% (n=938) and 1.4% (134). The other Anopheles species found was An. pharoensis (Figure 2; Annex Tables 8–11). Culicine mosquitoes represented 23.4% (n=2,876) of the total mosquitoes caught using PSC (Annex: Tables 8–11).

A total of 6,448 mosquitoes were collected by CDC light trap. *An. gambiae* s.l. was the only *Anopleles* species collected (100% of *Anopheles*; n=4,677) (Figure 2; Annex Tables 8–11). Culicine mosquitoes represented 27.5% (n=1,771) out of all mosquitoes caught using the CDC light trap collection method (Annex: Tables 8–11).

	Béoumi	Dabakala	Nassian	Sakassou	Total
An. gambiae s.l.	7,930	14,864	3,968	52,484	79,246
An. funestus s.l.	7	998	368	282	1,655
An. nili	1	560	0	13	574
Other Anopheles	819	310	7	1733	2,869
Culicine	1,486	2408	629	4881	9,404
Total	10,243	19,140	4,972	59,393	93,748

TABLE 3: NUMBER OF MOSQUITOES COLLECTED IN ALL SITES USING THE THREE COLLECTION METHODS

FIGURE 2: SPECIES COMPOSITION OF THE ANOPHELES MOSQUITOES COLLECTED IN THE FOUR SITES USING HLC, PSC, AND CDC LIGHT TRAPS FROM APRIL THROUGH DECEMBER 2019

SPECIES COMPOSITION IN BÉOUMI

In Béoumi, a total of 10,243 mosquitoes were collected from May through December 2019 using the three collection methods. *An. gambiae* s.l. was the most collected malaria vector species (90.6%; n=7,930). Only a few *An. funestus* s.l. (0.1%; n=7) were collected. The other *Anopheles* species represented 9.4% (n=819) of all *Anopheles* species. Culicines (14.5%, n=1,486) were also collected during the same period and using all methods.

Using HLC, a total of 7,611 mosquitoes were collected. *An. gambiae* s.l. was the most collected (88.5%; n=6,102) vector species. Only a few *An. funestus* s.l. (0.1%; n=7) were recorded. The other *Anopheles* species found was *An. pharoensis* (11.4%; n=783) (Figure 3; Annex Table 8).

With PSC, a total of 1,557 mosquitoes were collected. *An. gambiae* s.l. was the only vector species, representing 97% (n=1,183) of the total *Anopheles* collected. The other *Anopheles* species found was *An. pharoensis* (Figure 3; Annex Table 8).

With the CDC light trap, 1,075 mosquitoes were collected. All *Anopheles* mosquitoes collected were *An. gambiae* s.l. (100%; n=645) (Figure 3; Annex Table 8).

SPECIES COMPOSITION IN DABAKALA

In Dabakala, a total of 19,140 mosquitoes were collected from May through December 2019 using the three collection methods. *An. gambiae* was the predominant malaria vector species collected (88.8%; n=14,864). *An. funestus* s.l. and *An. nili* represented the other malaria vectors found, at 6% (n=560) and 3.4% (n=310) respectively. The other *Anopheles* species represented 1.9% (n=310) of all *Anopheles* collected all collection methods included. Two thousand four hundred and eight (2,408) culicines were collected during the same period and using all collection methods.

Using HLC, a total of 12,984 mosquitoes were collected during the eight months. *An. gambiae* s.l. was the main malaria vector species collected (92.7%; n=10,643). *An. funestus* s.l. and *An. nili* were the other vector species collected, at 2.4% (n=281) and 3.7% (n=426) respectively. *Anopheles pharoensis* represented the other *Anopheles* species found (1.2%; n=135) (Figure 4; Annex Table 9).

With PSC, a total of 3,557 mosquitoes were collected. *An. gambiae* s.l. was the most collected (69.9%; n=2,381). *An. funestus* s.l. and *An. nili* were the other vector species collected: 21% (n=717) and 3.9% (n=134) respectively. The other *Anopheles* species found was *An. pharoensis* (5.1%; n=175; Figure 4; Annex Table 9).

With the CDC light trap, 2,399 mosquitoes were collected with *An. gambiae* s.l. (100%; n=1,840) representing the only *Anopheles* and vector species collected (Figure 4; Annex Table 9).

Species Composition in Nassian

In Nassian, a total of 4,972 mosquitoes including culicines were collected from May through December 2019 using the three collection methods. *An. gambiae* s.l. was the main vector species collected (91.4%; n=14,864). *An. funestus* s.l. represented 8.5% (n=368). The other *Anopheles* species represented 0.2% (n=7) of all *Anopheles* collected. More than twelve percent of culicines were also collected during the period and using all collection methods (12.7%, n=629).

Using HLC, a total of 4,075 mosquitoes were collected in Nassian during the eight months. *An. gambiae s.l.* was the predominant vector species collected (92.5%; n=3,408). *An. funestus* s.l. was the other vector species collected, at 7.3% (n=270; Figure 5; Annex Table 10).

With PSC, a total of 701 mosquitoes were collected. *An. gambiae* s.l. was the most collected vector species (83.6%; n=501). *An. funestus* s.l. was the second malaria vector collected, at 16.4% (n=98), followed by *An. pharoensis* (0.2%, n=7; Figure 5; Annex Table 10).

With the CDC light trap, 196 mosquitoes were collected. *An. gambiae* s.l. (100%; n=59) was the only *Anopheles* species collected (Figure 5; Annex Table 10).

FIGURE 5 : SPECIES COMPOSITION OF THE ANOPHELES MOSQUITOES COLLECTED IN NASSIAN USING HLC, PSC, AND CDC LIGHT TRAPS FROM MAY THROUGH DECEMBER 2019

SPECIES COMPOSITION IN SAKASSOU

Sakassou was the most productive site among the four where vector surveillance was conducted. A total of 59,393 mosquitoes were collected from April through December 2019 using the three collection methods. *An. gambiae* s.l. was the main vector species collected (96.3%; n=52,484). Few *An. funestus* s.l. and *An. nili* were collected (0.5%; n=282 and 0.1%). The other *Anopheles* species represented 8.2% (n=4,881) of all *Anopheles* collected. More than eight percent of culicines were also collected in Sakassou (8.2%, n=4,881) during the same period, all methods included.

Using HLC, a total of 50,356 mosquitoes including 4.3% (n=2,150) culicines were collected in Sakassou during the nine months. *An. gambiae* s.l. was the most collected (96.4%; n=46,482). *Anopheles funestus* s.l. and *An. nili* were also collected (0.3%, n=159 and 0.1%, n=13). The other *Anopheles* species found was *An. pharoensis* (1.2%; n=135; Figure 6; Annex Table 11.

With PSC, a total of 6,259 mosquitoes including 33.3% (n=2,086) culicines were collected. *An. gambiae* s.l. was the predominant vector species collected (92.7%; n=3,869). Few *An. funestus* s.l. were collected: 2.9% (n=123). The other *Anopheles* species found was *An. pharoensis* (4.3%; n=181) (Figure 6; Annex Table 11).

With the CDC light trap, 2,778 mosquitoes including 23.2% (n=645) culicines were collected, and all *Anopheles* mosquitoes collected were *An. gambiae* s.l. (100%; n=2,133; Figure 6; Annex Table 11).

FIGURE 6: SPECIES COMPOSITION OF THE ANOPHELES MOSQUITOES COLLECTED IN SAKASSOU USING HLC, PSC, AND CDC-LIGHT TRAP FROM APRIL THROUGH DECEMBER 2019

3.1.2 BITING CYCLE OF AN. GAMBIAE S.L.

The hourly and monthly collections using HLC methods permitted the determination of the biting cycle of the main malaria vector, *An. gambiae* s.l. within the four longitudinal monitoring sites.

OVERALL TRENDS IN AN. GAMBIAE S.L. HBR

The HBRs were very high in Sakassou, with an overall rate ranging from 97.5 in May to 231 bpn in October 2019 (Figure 3; Annex Table 11). The indoor rate was between 76 and 212 bpn, and the outdoor rate ranged from 93 to 255 bpn from April 2019 through December 2019 (Figure 3). The biting rate ranged from 5 to 74 bpn in Dabakala and from 5 to 73 bpn in Béoumi. The biting rates were lowest in Nassian (from 1 to 50 bpn) regardless of the months and the collection place (Figure 7; Annex Table 12).

FIGURE 7: ANOPHELES GAMBIAE S.L. BITING RATE USING HLC AT ALL SITES

BITING CYCLE OF AN. GAMBIAE S.L. FROM BÉOUMI

An. gambiae s.l. showed variable biting behavior across the four districts (Annex Table 12). In Béoumi *An. gambiae* s.l. was endophilic (53.5%). The hourly biting rates peaked between 10:00 p.m. and 4:00 a.m. outdoors and indoors, and the highest average rate was recorded in September 2019, with about 15 bites per person per hour (bph) indoors and 11.6 bph outdoors (Figure 8; Annex Table 13).

FIGURE 8: BITING RATE AND CYCLE OF AN. GAMBIAE S.L. COLLECTED USING HLC IN BÉOUMI

BITING CYCLE OF AN. GAMBIAE S.L. FROM DABAKALA

The densities of *An. gambiae* s.l. were overall higher outdoors in Dabakala (51.4%). The average biting activities were higher between 10:00 p.m. and 03:00 a.m. during the eight-month collection period, both indoors and outdoors. The highest biting peak was recorded in July (13.4 bph indoors and 13.8 bph outdoors) with additional similar peaks in September and October (Figure 9; Annex Table 13).

FIGURE 9: BITING RATE AND CYCLE OF AN. GAMBIAE S.L. COLLECTED USING HLC IN DABAKALA

BITING CYCLE OF AN. GAMBIAE S.L. FROM NASSIAN

An. gambiae s.l. showed variable biting behavior in Nassian (Annex Table 12). The densities of *An. gambiae* s.l. were higher indoors in Nassian (57.8%). *An. gambiae* females biting activities were averagely higher between 01:00 a.m. and 03:00 a.m. during the eight months, both indoors and outdoors. The highest biting rates were recorded in October 2019 with 9.5 bph indoors and 8.4 bph outdoors (Figure 10; Annex Table 13).

FIGURE 10: BITING RATE AND CYCLE OF AN. GAMBIAE S.L. COLLECTED USING HLC IN NASSIAN

BITING CYCLE OF AN. GAMBIAE S.L. FROM SAKASSOU

The HBRs were very high in Sakassou, with an overall rate ranging from 97.5 to 231 bpn in May 2019 and October 2019 respectively (Figure 4; Annex Table 12). The indoor rate was between 76 and 212 bpn, and outdoor rate range was 93 to 255 bpn from April 2019 to December 2019. In Sakassou the biting rates peaked between 11:00 p.m. and 04:00 a.m. outdoors and indoors with the highest hourly indoor biting rate observed in August 2019 (32.9 bph) and outdoor in September and October 2019 (34 bph) (Figure 11; Annex Table 13).

3.1.3 MOLECULAR SPECIES IDENTIFICATION OF ADULTS *AN. GAMBIAE* S.L. COLLECTED THROUGH BIONOMICS MONITORING

Subsamples of *An. gambiae* s.l. were randomly analyzed for species identification using PCR. A total of 694 *An. gambiae* s.l. from Béoumi were molecularly identified for the identification of the species of the *An. gambiae* complex (488 from HLC, 104 from PSC, and 102 from CDC-light trap). The numbers were 698 from Dabakala (490 from HLC, 107 from PSC and 101 from CDC-light trap), 608 from Nassian (483 from HLC, 101 from PSC and 24 from CDC light trap), and 731 from Sakassou (521 from HLC, 106 from PSC, and 104 from CDC-light trap).

An. coluzzii represented the predominant species in Béoumi and Dabakala (all collection methods included) and was the only species found in Sakassou. In Nassian, An. gambiae was the only vector species found using the three methods (Figure 12).

FIGURE 12: PROPORTION OF AN. GAMBIAE S.L. PER COLLECTION METHODS IN THE BIONOMIC MONITORING SITES

3.1.4 INDOOR RESTING DENSITY

An gambiae s.l. indoor resting densities, as measured by PSCs, were highest in Dabakala (1 to 35 frd), followed by Sakassou (4 to 5 frd). Indoor resting densities were between 2 and 11 frd in Béoumi and lowest in Nassian (0 to 6 frd) (Figure 13). The percentage of blood-fed *An. gambiae* s.l. collected ranged from 7 to 99% during the nine months of monitoring (Annex Table 14).

FIGURE 13: MEAN INDOOR RESTING DENSITY OF AN. GAMBIAE S.L. BY MONTH AND BY SITE

Note: Error bars represent the standard errors.

3.1.5 PARITY RATE

For a better control of the ovary dissection and parity rate recording, the field teams were rotated between sites every month. Additionally, subsamples of 100 mosquitoes dissected per site and per month were 100% confirmed in the laboratory at CSRS. Thus, a total of 11,275 mosquitoes collected using HLCs over the collection period were dissected to determine parity across all four sites: Béoumi (3,042), Dabakala (2,726), Nassian (1,035), and Sakassou (4,472). Out of the dissected mosquitoes, 2,679 (88.1%) were found to be parous in Béoumi, 1,781 (65.3%) in Dabakala, 957 (92.5%) in Nassian, and 3,257 (72.8%) in Sakassou (Annex Table 15). Overall, the parity rate was similar for mosquitoes collected indoors and outdoors (Figure 14; Annex Table 16).

FIGURE 14: PARITY RATE OF AN. GAMBIAE S.L. COLLECTED USING HLC

3.1.6 PLASMODIUM FALCIPARUM SPOROZOITE RATES

The proportions of *An. gambiae* s.l. mosquitoes infected by *Plasmodium falciparum* ranged from 1.7 in Béoumi to 5.48% in Nassian (Table 4). May through July were the months with the highest number of *An. gambiae* s.l. infected bites in Béoumi, Dabakala, and Sakassou, while Nassian recorded high infection throughout the semester (June–December) except in August (Annex Table 17). With 37 *An. gambiae* s.l. infected, Nassian recorded the largest number of infectious bites among the four sites. Additionally, 16 *An. funestus* s.l. mosquitoes were found with sporozoite infections among the samples collected in November and December 2019, representing 32.6% of infected mosquitoes in Nassian.

		An. gam	<i>biae</i> s.1.		An. funestus s.l.			
District	ТС	TA	Р	SR	TC	TA	Р	SR
Béoumi	7,930	900	9	0.010	7	0		
Dabakala	14,864	868	16	0.018	998	0		
Nassian	3,968	675	37	0.055	368	215	16	0.074
Sakassou	52,484	900	19	0.021	282	0		

TABLE 4: VECTOR SPOROZOITE INFECTION RATE IN THE FOUR VECTOR BIONOMICS SITES

TC=total collected; TA=total analyzed; P=positive; SR=sporozoite rate.

3.1.7 ENTOMOLOGICAL INOCULATION RATE

Table 5 shows the overall EIRs for *An. gambiae* s.l. in the four districts recorded between April and December 2019 in Sakassou and from May through December 2019 in Béoumi, Dabakala, and Nassian. Specific average EIR of 0.61 infective bpn for *An. funestus* s.l. was reported for the collection of November and December in Nassian. Sakassou was still recording the highest EIR (3.59 infective bpn) of *An. gambiae* s.l., while Nassian and Dabakala had similar EIRs of 0.73 and 0.75 infective bpn. Béoumi recorded the lowest EIR among the four sites, with 0.24 infective bpn. This will be an important comparison factor for Dabakala and Nassian, as Dabakala represents the control site for IRS in Nassian (Annex Table 17).

TABLE 5: EIR OF MALARIA VECTORS COLLECTED USING HLC IN THE FOUR VECTOR BIONOMICS SITES

District	Sporozoite Rate	HBR (bpn)	EIR (infective bpn)				
An. gambiae s.l.							
Béoumi	0.010	24.26	0.24				
Dabakala	0.018	40.71	0.75				
Nassian	0.055	13.33	0.73				
Sakassou	0.021	170.04	3.59				
An. funestus s.l.							
Nassian	0.074	8.19	0.61				

3.1.8 HUMAN BLOOD INDEX

Table 6 describes the human blood index of *An. gambiae* s.l. from the four sites. A total of 801 blood fed female mosquitoes collected throughout the period using PSC method were analyzed from all four sites, and 72.7% had evidence of a human blood source. In Béoumi, 60.2% (n=121) of *An. gambiae* s.l. were blood fed from humans between May and December 2019. In Dabakala and Nassian, 73% and 72.5% were fed from a human source during the same time period. The highest blood index was observed in Sakassou, with 85% (n=170) of tested mosquitoes having fed on human blood. The results also showed that there the mosquitoes were feeding from other sources of blood (cattle: 2.1%; sheep: 1.4%, goats: 1.4%; and chickens: 0.6%; Annex Table 18)

	Human Blood					
District	Total Tested	Human Blood Positive	Human Blood Index (%)			
Béoumi	201	121	60.2			
Dabakala	200	146	73.0			
Nassian	200	145	72.5			
Sakassou	200	170	85.0			
Total	801	582	72.7			

TABLE 6: HUMAN BLOOD INDEX OF AN. GAMBIAE S.L. BY SITE

3.2 INSECTICIDE RESISTANCE MONITORING

Sixteen sites were planned to be tested for insecticide susceptibility within the 2019 PMI VectorLink work plan. Jacqueville could not be tested because not enough mosquito larvae could be collected and attempts to collect adult mosquitoes for an F1 generation have not been successful.

Table 7 shows the resistance status to the different insecticides tested against *An. gambiae* s.l. collected from the 15 different sites. All insecticides were tested in all sites.

Resistance was observed to the diagnostic dose of all pyrethroids and bendiocarb in all sites surveyed

Susceptibility to pirimiphos-methyl was recorded at the diagnostic dose in 10 sites, while resistance was observed in the 5 others, but at a low intensity.

The intensity of resistance was high in all sites for all the three pyrethroids (deltamethrin, permethrin, and alpha-cypermethrin), except in Nassian and Odienné, where permethrin resistance was moderate.

The pre-exposure of mosquitoes to PBO before deltamethrin, permethrin, and alphacypermethrin did not reverse the resistance status of the *An. gambiae* s.l. populations, but yielded partial increment of the mortality in all of the sites surveyed. Deltamethrin showed the highest increase in mortality among the pyrethroids when combined with PBO in all the sites (Table 7).

	Abengourou	Aboisso	Adzopé	Béoumi	Bettié	Bouaké	Bouna	Daloa
Insecticide Tested	Number Tested (% mortality)							
Deltamethrin (0.05%) 1x	90 (0)	84 (6)	91 (0)	76 (6.6)	97 (10.3)	100 (0)	86 (9.3)	95 (1.1)
PBO + deltamethrin (0.05)	89 (14.6)	84 (56)	91 (49.5)	73 (80.8)	94 (44.7)	95 (57.9)	95 (71.6)	85 (10.6)
Deltamethrin (0.25%) 5x	104 (27.9)	84 (11.9)	91 (53.1)	89 (75.3)	99 (31.3)	62 (38.7)	85 (18.8)	93 (22.6)
Deltamethrin (0.5%) 10x	99 (45.5)	80 (57.5)	91 (68.1)	73 (79.5)	107 (61.3)	97 (49.5)	85 (51.8)	89 (33.7)
Permethrin (0.75%) 1x	94 (1.1)	84 (0)	96 (2.1)	83 (0)	98 (1)	95 (2.1)	96 (7.3)	91 (1.1)
PBO + permethrin (0.75%)	89 (4.5)	84 (10.7)	95 (14.7)	77 (6.5)	100 (8)	93 (19.4)	101 (53.5)	93 (11.8)
Permethrin (3.75%) 5x	109 (42.2)	95 (17.9)	92 (27.2)	84 (63.1)	98 (67.3)	87 (37.9)	90 (60)	95 (11.6)
Permethrin (7.5%) 10x	97 (62.9)	97 (64.9)	95 (60)	74 (95.9)	100 (80))	101 (57.4)	90 (88.9)	86 (40.7)
Alpha-cypermethrin (0.05) 1x	90 (0)	81 (0)	91 (4.4)	88 (4.5)	105 (1.9)	106 (4.7)	93 (2.2)	93 (4.3)
PBO + alpha-cypermethrin (0.05)	77 (3.9)	84 (83.3)	97 (26.8)	83 (53)	105 (73.5)	103 (44.7)	96 (21.9)	93 (9.7)
Alpha-cypermethrin (0.25) 5x	93 (18.3)	80 (16.3)	86 (10.5)	80 (46.3)	100 (15)	88 (14.8)	93 (11.8)	95 (9.5)
Alpha-cypermethrin (0.5) 10x	100 (43)	80 (21.3)	97 (21.6)	75 (77.3)	95 (48.4)	101 (42.6)	96 (16.7)	91 (23.1)
Lambdacyhalothrin (0.05%) 1x	103 (0)	х	х	84 (54.8)	100 (99)	78 (0)	89 (2.2)	91 (38.5)
Bendiocarb (0.1%) 1x	95 (50.5)	98 (1)	89 (53.9)	х	88 (60.2)	78 (11.5)	98 (50)	96 (1)
Bendiocarb (1%) 10x	94 (77.7)	x	x	X	X	91 (37.4)	100 (64)	X
Pirimiphos-methyl (0.25%) 1x	105 (100)	97 (73.2)	98 (90.8)	86 (100)	101 (25.7)	84 (100)	98 (100)	97 (34)
Pirimiphos-methyl (1.25%) 5x	Х	95 (100)	99 (100)	X	97 (100)	Х	Х	92 (100)

TABLE 7: INSECTICIDE SUSCEPTIBILITY TEST RESULTS IN 15 SITES

^x represents the tests that were not completed, either because not enough mosquitoes were collected or because these mosquitoes were not needed for the intensity assay.

Resistance confirmed Suspected resistance

🗖 Susceptible

	Dabakala	Gagnoa	Nassian	Odienné	Sakassou	San Pedro	Yamous soukro
Insecticide tested	Number Tested (% mortality)						
Deltamethrin (0.05%) 1x	97 (5.2)	87 (4.6)	81 (2.5)	96 (7.3)	101 (5)	91 (4.4)	183 (3.8)
PBO + deltamethrin (0.05)	94 (45.7)	99 (47.5)	65 (40)	96 (70.8)	90 (30)	89 (21.3)	93 (73.1)
Deltamethrin (0.25%) 5x	107 (10.3)	92 (30.4)	79 (73.4)	104 (38.5)	98 (17.3)	100 (14)	187 (26.7)
Deltamethrin (0.5%) 10x	97 (27.8)	102 (50)	58 (91.4)	107 (61.7)	102 (62.7)	101 (46.5)	209 (61.2)
Permethrin (0.75%) 1x	100 (4)	95 (6.3)	101 (5)	98 (2)	99 (5.1)	94 (4.3)	179 (4.5)
PBO + permethrin (0.75%)	100 (11)	94 (46.8)	92 (47.8)	100 (20)	84 (54.8)	91 (26.4)	97 (51.5)
Permethrin (3.75%) 5x	47 (42.6)	98 (36.7)	76 (94.7)	96 (70.8)	101 (87.1)	92 (45.7)	151 (35.1)
Permethrin (7.5%) 10x	43 (76.7)	100 (85)	87 (98.9)	101 (100)	97 (87.)	91 (76.9)	179 (78.2)
Alpha-cypermethrin (0.05) 1x	98 (4.1)	95 (8.4)	86 (11.6)	91 (1.1)	693 (0)	100 (3)	100 (0)
PBO + alpha-cypermethrin (0.05)	95 (9.5)	91 (19.8)	63 (31.7)	101 (49.5)	88 (30.7)	99 (17.2)	92 (25)
Alpha-cypermethrin (0.25) 5x	44 (25)	96 (15.6)	71 (42.3)	103 (11.7)	99 (23.2)	83 (8.4)	93 (5.4)
Alpha-cypermethrin (0.5) 10x	48 (45.8)	98 (39.8)	107 (56.1)	101 (80.2)	93 (28)	99 (35.4)	96 (13.5)
Lambdacyhalothrin (0.05%) 1x	95 (2.1)	96 (5.2)	93 (2.2)	104 (1.9)	97 (9.3)	Х	х
Bendiocarb (0.1%) 1x	95 (31.6)	93 (15.1)	95 (35.8)	106 (51.9)	23 (0)	82 (32.9)	175 (7.4)
Bendiocarb (1%) 10x	х	97 (78.4)	90 (57.8)	97 (78.4)	x	98 (90.8)	Х
Pirimiphos-methyl (0.25%) 1x	98 (100)	89 (100)	110 (98.2)	98 (100)	85 (51.8)	101 (100)	85 (97.6)
Pirimiphos-methyl (1.25%) 5x	X	X	X	X	88 (100)	X	X

^x represents the tests that were not completed, either because not enough mosquitoes were collected or because these mosquitoes were not needed for the intensity assay.

Resistance confirmed Suspected resistance S

🗖 Susceptible

The results of the CDC bottle assays using chlorfenapyr and WHO susceptibility test using clothianidin are shown in Figures 15–17.

Resistance to chlorfenapyr was observed at the dose of $100 \,\mu\text{g}$ /bottle after observing mortality for 72 hours in all sites except Bettie. The lowest mortality rate was recorded in Sakassou using the $100 \,\mu\text{g}$ /bottle. Susceptibility to chlorfenapyr at $200 \mu\text{g}$ /bottle was recorded in 9 of the 15 sites surveyed. Béoumi, Bouaké, Gagnoa, Nassian, Sakassou, and San Pedro showed resistance at the dose of $200 \mu\text{g}$ /bottle.

For clothianidin, full susceptibility was observed in seven out of 15 sites. Resistance was observed in Abengourou, Aboisso, Bettié, Bouaké, Bouna, Daloa, Odienné, and Yamoussoukro.

In Figures 15–17, the horizontal dashed red line represents the 90% threshold for resistance, and the green line represents the 98% threshold for susceptibility

FIGURE 15: SUSCEPTIBILITY OF An. GAMBIAE S.L. TO CHLORFENAPYR 100μ G/BOTTLE BY SITE

FIGURE 16: SUSCEPTIBILITY OF An. GAMBIAE S.L. TO CHLORFENAPYR 200 μ G/BOTTLE BY SITE

FIGURE 17: SUSCEPTIBILITY OF AN. GAMBIAE S.L. TO CLOTHIANIDIN BY SITE

3.3 MOLECULAR MARKERS OF RESISTANCE

Figure 18 shows the distribution of *kdr* (West and East) and *ace-1* for *An. gambiae sl.* from the 15 sites. Overall, *kdr*-West mutations were highly present (ranged from 36.8 to 97%) in all study sites while the *kdr*-East mutation was found at low frequency in 11 sites but not in Bettié, Gagnoa, Nassian and Odienné. The highest *kdr*-East frequency was recorded in Sakassou and Bouaké (9.8% and 9.3%). In other locations, *kdr*-East was present at frequencies that ranged between 2.5 and 5.9%. The presence of both *kdr* mutations in the country is consistent with the high phenotypic resistance observed to pyrethroid insecticides, and represents a real threat to pyrethroid-based vector control tools. About 7.6% (59/778) of the mosquitoes tested across all sites were carrying both mutations.

As with *kdr*, the *ace-1* mutation was found in all sites, and the frequencies ranged from 8% in San Pedro to 65% in Gagnoa, confirming the resistance observed in all sites to bendiocarb and in some sites to pirimiphosmethyl.

FIGURE 18: DISTRIBUTION OF TARGET SITE MUTATIONS IN AN. GAMBIAE S.L IN ALL SITES TESTED FOR INSECTICIDE RESISTANCE IN CÔTE D'IVOIRE

3.3.3 MOLECULAR SPECIES IDENTIFICATION OF ADULT *AN. GAMBIAE* S.L. TESTED FOR SUSCEPTIBILITY

Figure 19 shows the species composition of *An. gambiae* s.l. used for susceptibility testing per site. *An. coluzzii* represented the predominant species in Abengourou, Abidjan, Aboisso, Adzopé, Béoumi, Daloa, Dabakala, Sakassou, and San Pedro. One hundred percent of the population in Daloa, Gagnoa, and Sakassou were *An. Coluzzi*, while the population of Bouna, Nassian, and Odienné were entirely *An. gambiae* s.s. The populations from Bettié, Bouaké, and Yamoussoukro were dominated by *An. gambiae* s.s. A few hybrids of the two species were characterized in San Pedro (1.2%) and Yamoussoukro (2.5%).

FIGURE 19: PROPORTION OF AN. GAMBIAE S.L. USED FOR SUSCEPTIBILITY TEST ACROSS THE 15 DISTRICTS

4. CONCLUSION

An. gambiae s.l. represented the predominant malaria vector collected in all the four longitudinal monitoring sites during the nine months of collection. Anopheles coluzzii and An. gambiae s.s. were the two species of the complex recorded in all sites. An. coluzzii was predominant in Béoumi, Dabakala, and Sakassou. An. gambiae s.s. represented the main vector only in Nassian

The molecular species identification of the mosquitoes used for susceptibility testing showed the predominance of *An. coluzzii* in 9 of the 15 sites. *An. gambiae* s.s. was the predomineant species in five sites, mainly among the samples collected in the north of the country.

The presence of different species in Nassian (*An. gambiae* s.s.) and Sakassou (*An. coluzzii*) is important, because IRS will be implemented in both districts in 2020. That will help understand any behavior changes that could occur within each species population in the future after IRS. The different site's vector species will also support the assessment of the impact of the IRS on entomological indicators.

Sakassou recorded the highest density of malaria vectors collected (82.7%). The average HBR of *An. gambiae* s.l. in Sakassou ranged from 97.5 to 231 bpn; the next highest HBR was in Dabakala (5 to 74 bpn). This trend, combined with it having the highest reported malaria incidence in the country, makes Sakassou the top candidate for IRS in Côte d'Ivoire. April through August represents the long rainy season in the Southern and Central part of the country where Sakassou is located. Therefore, the higher number of mosquito vectors collected could support conducting IRS in April. Furthermore, Nassian recorded the highest number of infected vectors, validating the selection of Nassian as the second IRS targeted site. Similar EIRs were observed in Dabakala and Nassian, and only Nassian will receive IRS in 2020, so Dabakala will serve as a good control against which to measure the entomological impact of IRS.

The overall parity rate was high across all four sites, and ranged from 65.3% to 92.5%, increasing the probability of mosquitoes carrying *Plasmodium falciparum* and transmitting malaria. The longevity of the mosquitoes before and after IRS is an important indicator of IRS impact as well.

An. gambiae s.l. was endophilic in Dabakala (indoor densities 1–35 frd) and Sakassou (4–5 frd), and mainly exophilic in Béoumi and Nassian. Continued longitudinal monitoring in all the sites after IRS will help detect any biting behavior changes.

High pyrethroid and carbamate resistance was observed in all 15 sites monitored for susceptibility of *An. gambiae* s.l., emphasizing the potentially limited efficacy of pyrethroid-only treated tools for vector control that need to be reoriented appropriately for more efficiency in controling malaria.

Pre-exposure to PBO before exposure to deltamethrin, permethrin, and alpha-cypermethrin yielded partial but substantial increases in the mortality of the *An. gambiae* s.l. population in all sites, particularly with deltamethrin. This shows that enzymes such as P450s might be involved in the insecticide resistance, but further molecular analysis may be required to confirm the extent of their involvement.. These additional investigations could also support the NMCP in selecting areas that could be considered for PBO ITN distribution.

Susceptibility to the diagnostic dose of pirimiphos-methyl was observed in 10 sites, while the intensity of the resistance was low in the 5 remaining sites. If IRS is extended to new districts, the current data could guide insecticide selection, with a possible rotation of pirimiphos-methyl- and clothianidin-based products to mitigate further development of insecticide resistance.

Susceptibility to clothianidin was observed in seven sites seven days after exposure, including the two sites targeted for IRS in 2020.

Chlorfenapyr at the dose of 200µg/bottle yielded full susceptibility in 10 of the sites, while only Bettié yielded full susceptibility at the lower dose of 100µg/bottle. As the insecticide is still under assessment for diagnostic concentration, the "resistance" observed already in few sites in the country should calls for continuous monitoring to delimitate its extent. Furthermore, the data gathered on chlorfenapyr across several will help the WHO prequalification team determine the appropriate diagnostic dose for this insecticide. Morever, vector control tools incorporating chlorfenapyr, such as Interceptor G2 nets, could be recommended in a stratified distribution of ITNs for malaria vector control and resistance management in Côte d'Ivoire.

ANNEX

BÉOUMI	Species	May 2019	June 2019	July 2019	August 2019	September 2019	October 2019	November 2019	December 2019	Total
	An. gambiae s.l.	234 (69)	162 (98.2)	517 (77.39)	481 (92)	2,326 (90.4)	1,612 (78.7)	535 (66.9)	235 (47.6)	6,102 (80.17)
	An. funestus s.l.		1 (0.6)						6 (1.2)	7 (1.1)
	An. nili			1 (0.15)						1 (0.01)
HLC	Other Anopheles	10 (2.95)	2 (1.2)	43 (6.44)	9 (1.7)	150 (5.8)	323 (15.8)	167 (20.9)	79 (16.0)	783 (10.29)
	Culicine	95 (28.02)		107 (16.02)	33 (6.3)	97 (3.8)	114 (5.6)	98 (12.3)	174 (35.2)	718 (9.43)
	Total	339	165	668	523	2573	2049	800	494	7611
	An. gambiae s.l.	43 (75.4)	81 (41.5)	225 (75.0)	130 (72.6)	338 (79.0)	201 (97.6)	101 (84.2)	64 (88.9)	1,183 (76)
DSC	Other Anopheles	4 (7)					5 (2.4)	19 (15.8)	8 (11.1)	36 (2.3)
r se	Culicine	10 (17.5)	114 (58.5)	75 (25.0)	49 (27.4)	90 (21.0)				338 (21.7)
	Total	57	195	300	179	428	206	120	72	1557
CDC light trap	An. gambiae s.l.	15 (12.8)	3 (11.5)	89 (60.1)	27 (36.5)	360 (90.2)	72 (50.3)	38 (76.0)	41 (34.7)	645 (60)
	Culicine	102 (87.2)	23 (88.5)	59 (39.9)	47 (63.5)	39 (9.8)	71 (49.7)	12 (24.0)	77 (65.3)	430 (40)
	Total	117 (100)	26 (100)	148 (100)	74 (100)	399 (100)	143 (100)	50 (100)	118 (100)	1,075 (100)

TABLE 8: SPECIES COMPOSITION OF MOSQUITOES COLLECTED IN BÉOUMI USING THE THREE COLLECTION METHODS

DABAKALA	Species	May 2019	June 2019	July 2019	August 2019	September 2019	October 2019	November 2019	December 2019	Total
	An. gambiae s.l.	716 (61.8)	512 (64.7)	2,233 (86.7)	2,010 (87.3)	2,374 (87.0)	1,859 (90.7)	781 (97.6)	158 (32.0)	10,643 (82)
	An. funestus s.l.	3 (0.3)	3 (0.4)	24 (0.9)	72 (3.1)	140 (5.1)	12 (0.6)	18 (2.3)	9 (1.8)	281 (2.2)
HLC	An. nili	12 (1.0)	50 (6.3)	28 (1.1)	1 (0.0)		304 (14.8)	27 (3.4)	4 (0.8)	426 (3.3)
	Other Anopheles	4 (0.3)	3 (0.4)	23 (0.9)	36 (1.6)	38 (1.4)	21 (1.0)	9 (1.1)	1 (0.2)	135 (1)
	Culicine	423 (36.5)	223 (28.2)	268 (10.4)	183 (7.9)	177 (6.5)	102 (5.0)	38 (4.8)	85 (17.2)	1499 (11.5)
	Total	1,158	479	2,576	2,302	2,729	2,298	873	257	12,984
	An. gambiae s.l.	191 (62.8)	125 (57.6)	543 (47.9)	679 (61.6)	356 (96.7)	286 (75.9)	175 (81.0)	26 (66.7)	2381 (63.4)
	An. funestus s.l.			310 (27.3)	360 (32.7)			34 (15.7)	13 (33.3)	717 (19.1)
DEC	An. nili			36 (3.2)			91 (24.1)	7 (3.2)		134 (3.6)
PSC	Other Anopheles			169 (14.9)	6 (0.5)					175 (4.7)
	Culicine	113 (37.2)	92 (42.4)	76 (6.7)	57 (5.2)	12 (3.3)				350 (9.3)
	Total	304	217	1,134	1,102	368	377	216	39	3,757
	An. gambiae s.l.	27 (46.6)	12 (27.3)	599 (82.8)	829 (74.9)	107 (74.4)	213 (89.1)	40 (87.0)	13 (43.3)	1840 (76.7)
CDC light trap	Culicine	31 (53.4)	32 (72.7)	124 (17.2)	278 (25.1)	45 (29.6)	26 (10.9)	6 (13.0)	17 (56.7)	559 (23.3)
CDC light trap	Total	58 (100)	44 (100)	723 (100)	1,107 (100)	152 (100)	239 (100)	46 (100)	30 (100)	2,399 (100)

TABLE 9: SPECIES COMPOSITION OF MOSQUITOES COLLECTED IN DABAKALA USING THE THREE COLLECTION METHODS

NASSIAN	Species	May 2019	June 2019	July 2019	August 2019	September 2019	October 2019	November 2019	December 2019	Total
	An. gambiae s.l.	26 (41.3)	34 (36.6)	63 (67.7)	42 (43.3)	1,330 (95.9)	1,612 (78.7)	112 (14.0)	189 (38.3)	3,408 (83.6)
	An. funestus s.l.				5 (5.2)	3 (0.2)		203 (25.4)	59 (11.9)	270 (6.6)
HLC	Other Anopheles				5 (5.2)		2 (0.1)			7 (0.2)
	Culicine	37 (58.7)	59 (63.4)	30 (32.3)	45 (46.4)	54 (3.9)	86 (4.2)	34 (4.3)	45 (9.1)	390 (9.6)
	Total	63	93	93	97	1,387	1,700	349	293	4,075
	An. gambiae s.l.	37 (44.6)	27 (67.5)	15 (36.6)	31 (73.8)	140 (73.8)	176 (100)	58 (42.6)	17 (45.9)	501 (71.5)
DSC	An. funestus s.l.							78 (57.4)	20 (54.1)	98 (14.0)
F3C	Culicine	46 (55.4)	13 (32.5)	26 (63.4)	11 (26.2)	6 (4.1)				102 (14.6)
	Total	83	40	41	42	146	176	136	37	701
	An. gambiae s.l.	0	3 (3.7)	0 (0)	5 (19.2)	3 (42.9)	22 (81.5)	25 (89.3)	1 (20.0)	59 (30.1)
CDC light trap	Culicine	3 (100)	78 (96.3)	19 (100)	21 (80.8)	4 (57.1)	5 (18.5)	3 (10.7)	4 (80.0)	137 (69.9)
	Total	3 (100)	81 (100)	19 (100)	26 (100)	7 (100)	27 (100)	28 (100)	5 (100)	196 (100)

TABLE 10: SPECIES COMPOSITION OF MOSQUITOES COLLECTED IN NASSIAN USING THE THREE COLLECTION METHODS

SAKASSOU	Species	Apr 2019	May 2019	June 2019	July 2019	August 2019	September 2019	October 2019	November 2019	December 2019	Total
	An. gambiae s.l.	2959 (97.7)	3,121 (96.5)	3,162 (87.8)	4,486 (84.6)	5,761 (90.1)	6,863 (92.2)	7,384 (94.6)	6,916 (96.2)	5,830 (94.1)	46,482 (92.3)
	An. funestus s.l.			24 (0.7)	8 (0.2)	6 (0.1)	1 (0.0)	74 (0.9)	15 (0.2)	31 (0.5)	159 (0.3)
	An. nili			5 (0.1)	4 (0.1)	3 (0.1)	1 (0.0)				13 (0.03)
HLC	Other Anopheles	100 (3.1)	114 (3.5)	153 (4.2)	403 (7.6)	192 (3)	236 (3.2)	180 (2.3)	71 (1.0)	103 (1.7)	1,552 (3.1)
	Culicine	133 (4.2)		259 (7.2)	400 (7.5)	430 (6.7)	344 (4.6)	166 (2.1)	184 (2.6)	234 (3.8)	2,150 (4.3)
	Total	3,192	3,235	3,603	5,301	6392	7,445	7,804	7,186	61,98	50,356
	An. gambiae s.l.	325 (94.5)	121 (94.5)	380 (79.5)	243 (76.2)	534 (57.9)	666 (86.4)	414 (50)	707 (50)	479 (45.4)	3,869 (61.8)
	An. funestus s.l.			1 (0.2)		74 (8.0)				48 (4.6)	123 (2)
PSC	Other Anopheles			11 (2.3)	12 (3.8)	158 (17.1)					181 (2.9)
	Culicine	20 (5.5)	7 (5.5)	86 (18.0)	64 (20.1)	156 (16.9)	105 (13.6)	414 (50)	707 (50)	527 (50)	2,086 (33.3)
	Total	345	128	478	319	922	771	828	1,414	1,054	6,259
	An. gambiae s.l.	159 (64.3)	54 (64.5)	206 (43.2)	69 (45.1)	67 (57.8)	220 (73.8)	796 (96.1)	337 (92.8)	225 (93.4)	2133 (76.8)
CDC-light	Culicine	59 (35.7)	30 (35.7)	271 (56.8)	84 (54.9)	49 (42.2)	78 (26.2)	32 (3.9)	26 (7.2)	16 (6.6)	645 (23.2)
r	Total	218 (100)	84 (100)	477 (100)	153 (100)	116 (100)	298 (100)	828 (100)	363 (100)	241 (100)	2778 (100)

TABLE11: SPECIES COMPOSITION OF MOSQUITOES COLLECTED IN SAKASSOU USING THE THREE COLLECTION METHODS

Sites	Month	Outdoor Biting Rate (bpn)	Indoor Biting Rate (bpn)	Total Biting Rate (bpn)
	May 19	11.9	9.2	10.5
	June 19	5.8	4.3	5.1
	July 19	16.4	15.9	16.2
	August 19	9.9	20.1	15.0
Béoumi	September 19	64.4	80.9	72.7
	October 19	44.4	56.4	50.4
	November 19	18.7	14.8	16.7
	December 19	10.1	4.6	7.3
	May 19	26.6	18.1	22.4
	June 19	7.8	9.9	8.8
	July 19	64.6	75.0	69.8
Dahahala	August 19	54.3	71.4	62.8
Dadakala	September 19	78.9	69.4	74.2
	October 19	57.8	58.4	58.1
	November 19	30.6	18.2	24.4
	December 19	6.9	3.0	4.9
	May 19	1.2	0.4	0.8
	June 19	1.1	1.0	1.1
	July 19	1.9	2.1	2.0
Nassian	August 19	1.1	1.5	1.3
18351411	September 19	38.8	44.3	41.6
	October 19	41.7	59.1	50.4
	November 19	2.0	5.0	3.5
	December 19	3.9	7.9	5.9
	April 19	123.7	75.8	99.8
	May 19	95.1	99.9	97.5
	June 19	93.3	104.4	98.8
	July 19	120.6	159.8	140.2
Sakassou	August 19	171.1	188.9	180.0
	September 19	235.1	193.9	214.5
	October 19	255.8	205.8	230.8
	November 19	220.8	211.5	216.1
	December 19	201.1	163.3	182.2

TABLE 12 : MONTHLY BITING RATE RESULTS USING HLC

Sites		April 19	May 19	June 19	July 19	August 19	September 19	October 19	November 19	December 19	Total
	Out N (%)		121 (51.7)	94 (57.7)	263 (50.8)	159 (33.1)	1,031 (44.3)	710 (44.0)	299 (55.9)	163 (67.6)	2,840 (46.5)
Béoumi	In N (%)		113 (48.7)	69 (42.3)	255 (49.2)	322 (66.9)	1,295 (55.7)	902 (56.0)	236 (44.1)	78 (32.4)	3,272 (53.5)
	Total		236	163	518	481	2,326	1,612	535	241	6,112
	Out N (%)		434 (59.4)	261 (46.2)	1,050 (46.0)	913 (43.8)	1,358 (54)	1,180 (54.3)	525 (63.6)	117 (68.4)	5,838 (51.4)
Dabakala	In N (%)		297 (40.6)	304 (53.8)	1,235 (54.0)	1,170 (56.2)	1,156 (46)	995 (45.7)	301 (36.4)	54 (31.6)	5,512 (48.6)
	Total		731	565	2,285	2,083	2,514	2,175	826	171	11,350
	Out N (%)		19 (73.1)	18 (52.9)	30 (47.6)	20 (42.6)	621 (46.6)	667 (41.4)	103 (32.7)	74 (29.8)	1,552 (42.2)
Nassian	In N (%)		7 (26.9)	16 (47.1)	33 (52.4)	27 (57.4)	712 (53.4)	945 (58.6)	212 (67.3)	174 (70.2)	2,126 (57.8)
	Total		26	34	63	47	1,333	1,612	315	248	3,678
	Out N (%)	1,835 (62)	15,22 (48.8)	1,513 (47.4)	1,933 (43.0)	2,743 (47.5)	3,763 (54.8)	4,128 (51.1)	3,540 (51.1)	3,233 (55.2)	24,210 (51.9)
Sakassou	In N (%)	1130 (38)	1,599 (51.2)	1,678 (52.6)	2,565 (57.0)	3,027 (52.5)	3,102 (45.2)	3,330 (48.9)	3,391 (48.9)	2,628 (44.8)	22,450 (48.1)
	Total	2,965	3,121	3,191	4,498	5,770	6,865	7,458	6,931	5,861	46,660

TABLE 13: BITING BEHAVIOR OF AN. GAMBIAE S.L. PER SITE

In: indoor; Out: outdoor

Sites	Months	Blood-fed	Half Gravid	Gravid	Unfed	Total	% Blood-Fed
	May 19	23	18	0	2	43	53
	June 19	50	15	6	3	74	68
	July 19	134	28	31	29	222	60
	August 19	52	22	50	6	130	40
Béoumi	September 19	183	67	68	19	337	54
	October 19	110	44	37	13	204	54
	November 19	100	22	5	1	128	78
	December 19	43	13	7	3	66	65
	Total	695	229	204	76	1,204	58
	May 19	77	52	62	14	205	38
	June 19	21	48	53	3	125	17
	July 19	402	13	38	95	548	73
	August 19	347	6	149	167	669	52
Dabakala	September 19	167	58	43	77	345	48
	October 19	182	68	11	26	287	63
	November 19	58	61	49	7	175	33
	December 19	5	6	13	3	27	19
	Total	1,259	312	418	392	2,381	53
	May 19	32	0	3	2	37	86
	June 19	2	15	9	1	27	7
	July 19	14	0	1	0	15	93
	August 19	15	8	12	0	35	43
Nassian	September 19	101	26	1	12	140	72
	October 19	174	0	0	2	176	99
	November 19	23	30	25	1	79	29
	December 19	13	6	9	1	29	45
	Total	374	85	60	19	538	70
	April 19	254	0	0	71	325	78
	May 19	98	0	8	28	134	73
	June 19	270	36	55	20	381	71
	July 19	113	13	41	73	240	47
Salzasson	August 19	307	30	48	137	522	59
Sakassou	September 19	292	78	119	177	666	44
	October 19	233	5	35	144	417	56
	November 19	453	19	58	165	695	65
	December 19	244	29	94	114	481	51
	Total	2,264	210	458	929	3,861	59

TABLE 14: PERCENTAGE OF BLOOD-FED AN. GAMBIAE S.L. COLLECTED USING PSC

District	Month	Dissected	Parous	Parity Rate
	May 19	232	196	84.5
	June 19	144	139	96.5
	July 19	384	319	83.1
	August 19	422	380	90.0
Béoumi	September 19	272	231	84.9
	October 19	944	816	86.4
	November 19	407	383	94.1
	December 19	237	215	90.7
	Total	3,042	2,679	88.1
	May 19	419	289	69.0
	June 19	268	268	100.0
	July 19	422	144	34.1
	August 19	470	360	76.6
Dabakala	September 19	308	39	12.7
	October 19	298	218	73.2
	November 19	409	342	83.6
	December 19	132	121	91.7
	Total	2,726	1,781	65.3
	May 19	26	25	96.2
	June 19	34	30	88.2
	July 19	62	54	87.1
	August 19	49	48	98.0
Nassian	September 19	167	165	98.8
	October 19	181	164	90.6
	November 19	297	253	85.2
	December 19	219	218	99.5
	Total	1,035	957	92.5
	April 19	366	318	86.9
	May 19	471	259	55.0
	June 19	490	419	85.5
	July 19	579	494	85.3
Salzagou	August 19	594	497	83.7
Sakassou	September 19	616	469	76.1
	October 19	458	335	73.1
	November 19	428	182	42.5
	December 19	470	284	60.4
	Total	4,472	3,257	72.8
Grand total		11,275	8,674	76.9

TABLE 15: MONTHLY PARITY RATES OF DISSECTED MOSQUITOES PER SITE

			Outdoor			Indoor	
District	Month	Dissected	Parous	Parity Rate	Dissected	Parous	Parity Rate
	May 19	144	118	81.9	88	78	88.6
	June 19	84	81	96.4	60	58	96.7
	July 19	178	149	83.7	206	170	82.5
Báoumi	August 19	138	122	88.4	284	258	90.8
Deouini	September 19	125	104	83.2	147	127	86.4
	October 19	464	406	87.5	480	410	85.4
	November 19	231	216	93.5	176	167	94.9
	December 19	163	150	92.0	74	65	87.8
	May 19	255	169	66.3	164	120	73.2
	June 19	118	118	100.0	150	150	100.0
	July 19	220	67	30.5	202	77	38.1
Dabakala	August 19	270	216	80.0	200	144	72.0
Dabakala	September 19	158	17	10.8	150	22	14.7
	October 19	166	124	74.7	132	94	71.2
	November 19	285	235	82.5	124	107	86.3
	December 19	93	84	90.3	39	37	94.9
	May 19	19	18	94.7	7	7	100.0
	June 19	18	15	83.3	16	15	93.8
	July 19	29	27	93.1	33	27	81.8
Nassian	August 19	22	22	100.0	27	26	96.3
1 40551011	September 19	80	80	100.0	87	85	97.7
	October 19	77	69	89.6	104	95	91.3
	November 19	97	84	86.6	200	169	84.5
	December 19	65	64	98.5	154	154	100.0
	April 19	214	184	86.0	152	134	88.2
	May 19	239	127	53.1	232	132	56.9
	June 19	247	214	86.6	243	205	84.4
	July 19	238	202	84.9	341	292	85.6
Sakassou	August 19	299	254	84.9	295	243	82.4
	September 19	344	276	80.2	272	193	71.0
	October 19	240	169	70.4	218	166	76.1
	November 19	221	102	46.2	207	80	38.6
	December 19	244	146	59.8	226	138	61.1

TABLE 16: MONTHLY PARITY RATES OF DISSECTED MOSQUITOES FORM INDOOR AND OUTDOOR COLLECTIONS

District	Month	Total Tested	Number of Circumsporozoite Positive	Sporozoite Rate (%)	HBR (bpn)	EIR (infective bpn)
			<i>An. gambiae</i> s.l.			
	May	100	3	3.0	10.6	0.318
	June	100	4	4.0	5.1	0.204
	July	74	0	0.0	16.2	0.000
	August	120	0	0.0	15	0.000
Béoumi	September	114	0	0.0	72.7	0.000
	October	120	2	1.7	50.4	0.840
	November	134	0	0.0	16.7	0.000
	December	138	0	0.0	7.4	0.000
	Total	900	9	1.0	24.26	0.243
	May	103	5	4.9	22.4	1.087
	June	100	3	3.0	8.9	0.267
	July	124	4	3.2	69.8	2.252
	August	125	2	1.6	62.9	1.006
Dabakala	Sept	100	0	0.0	74.2	0.000
	October	100	0	0.0	58.1	0.000
	November	100	0	0.0	24.4	0.000
	December	116	2	1.7	5	0.086
	Total	868	16	1.8	40.71	0.750
	May	22	0	0.0	0.8	0.000
	June	29	1	3.4	1.1	0.038
	July	59	4	6.8	2	0.136
	August	42	0	0.0	1.3	0.000
Nassian	September	116	4	3.4	41.6	1.434
	October	157	5	3.2	50.4	1.605
	November	89	10	11.2	3.5	0.393
	December	161	13	8.1	5.9	0.476
	Total	675	37	5.5	13.33	0.730
	April	99	0	0.0	99.8	0.000
	May	100	8	8.0	97.5	7.800
	June	100	4	4.0	98.9	3.956
Sakassou	July	100	1	1.0	140.2	1.402
	August	100	1	1.0	180	1.800
	September	100	1	1.0	214.5	2.145
	October	100	0	0.0	230.8	0.000

TABLE 17: MONTHLY SPOROZOITE AND EIRS OF THE FOUR DISTRICTS OF BIONOMIC SURVEY

District	Month	Total Tested	Number of Circumsporozoite Positive	Sporozoite Rate (%)	HBR (bpn)	EIR (infective bpn)
	November	102	1	1.0	216.2	2.120
	December	99	3	3.0	182.2	5.521
	Total	900	19	2.1	170.04	3.59
			An. funestus s.l.			
	November	161	13	8.1	12.69	1.024
Nassian	December	54	3	5.5	3.68	0.202
	Total	215	16	7.4	8.18	0.609

TABLE 18: ELISA BLOOD FEEDING (BLOOD ORIGIN) IN FOUR DISTRICTS OF VECTOR BIONOMIC SURVEY

District	Total tested N	Status	Human		Cattle		Sheep		Goat		Chicken	
			Total (n)	%								
Beoumi	201	Positive	121	60.20	4	1.99	2	1.00	2	1.00	0	0.00
		Negative	80	39.80	197	98.01	199	99.00	199	99.00	201	100.00
Dabakala	200	Positive	146	73.00	11	5.50	3	1.50	3	1.50	5	2.50
		Negative	54	27.00	189	94.50	197	98.50	197	98.50	195	97.50
Nassian	200	Positive	145	72.50	1	0.50	2	1.00	2	1.00	0	0.00
		Negative	55	27.50	199	99.50	198	99.00	198	99.00	200	100.00
Sakassou	200	Positive	170	85.00	1	0.50	4	2.00	4	2.00	0	0.00
		Negative	30	15.00	199	99.50	196	98.00	196	98.00	200	100.00

TABLE 19: SPECIES IDENTIFICATION IN THE FOUR DISTRICTS OF BIONOMIC SURVEY

District	Methods	Total Tested An. co		izzii	An gambi	<i>ae</i> s.s.	Hybrid An. coluzzii/gambia	
Distilet		Ν	Total (n)	%	Total (n)	%	Total (n)	%
Béoumi	HLC	488	441	90.37	46	9.43	1	0.20
	PSC	104	82	78.85	22	21.15	0	0
	CDC	102	92	90.20	10	9.80	0	0
Dabakala	HLC	490	437	89.18	53	10.82	0	0
	PSC	107	99	92.52	8	7.48	0	0
	CDC	101	87	86.14	14	13.86	0	0
	HLC	483	0	0	483	100	0	0
Nassian	PSC	101	0	0	101	100	0	0
	CDC	24	0	0	24	100	0	0
Sakassou	HLC	521	521	100	0	0	0	0
	PSC	106	106	100	0	0	0	0
	CDC	104	104	100	0	0	0	0

	Kdr-West							
District	Total (n)	RR	RS	SS	% Kdr West			
Abengourou	52	29	17	6	72.12			
Aboisso	50	27	19	4	73.00			
Adzopé	51	10	24	17	43.14			
Béoumi	53	16	7	30	36.79			
Bettié	50	38	8	4	84.00			
Bouaké	54	30	16	8	70.37			
Bouna	50	46	1	3	93.00			
Dabakala	58	18	12	28	41.38			
Daloa	50	26	20	4	72.00			
Gagnoa	50	0	34	16	34.00			
Nassian	50	15	21	14	51.00			
Odienné	50	47	3	0	97.00			
Sakassou	51	9	37	5	53.92			
San Pedro	50	31	19	0	81.00			
Yamoussoukro	59	45	12	2	86.44			

TABLE 20: FREQUENCIES OF KDR-WEST IN MOSQUITOES

RR: Homozygous with two resistant Kdr West alleles;

RS : Heterozygous with one resistant Kdr West allele and one susceptible allele;

SS: Homozygous with two susceptible alleles.

	<i>Kdr</i> -East								
District	Total (n)	RR	RS	SS	% <i>Kdr</i> -East				
Abengourou	52	0	4	48	3.85				
Aboisso	50	0	5	45	5				
Adzopé	51	0	6	45	5.88				
Béoumi	53	0	6	47	5.66				
Bettié	50	0	0	50	0				
Bouaké	54	0	10	44	9.26				
Bouna	50	1	3	46	5				
Dabakala	58	0	5	53	4.31				
Daloa	50	1	1	48	3				
Gagnoa	50	0	0	50	0				
Nassian	50	0	0	50	0				
Odienné	50	0	0	50	0				
Sakassou	51	1	8	42	9.8				
San Pedro	50	1	4	45	6				
Yamoussoukro	59	0	3	56	2.54				

TABLE 21: FREQUENCIES OF KDR-EAST IN MOSQUITOES

RR: Homozygous with two resistant Kdr East alleles;

RS: Heterozygous with one resistant Kdr East allele and one susceptible allele;

SS: Homozygous with two susceptible alleles.

District	ACE-1 G1198							
District	Total (n)	RR	RS	SS	%ACE-1 (G119S)			
Abengourou	50	8	22	20	38.00			
Aboisso	50	0	10	40	10.00			
Adzopé	50	0	11	39	11.00			
Béoumi	50	0	33	17	33.00			
Bettie	50	0	12	38	12.00			
Bouaké	50	6	27	17	39.00			
Bouna	50	3	12	35	18.00			
Dabakala	50	2	11	37	15.00			
Daloa	50	4	32	14	40.00			
Gagnoa	50	15	35	0	65.00			
Nassian	50	0	8	42	8.00			
Odienné	50	6	16	28	28.00			
Sakassou	50	9	23	18	41.00			
San Pedro	50	1	6	43	8.00			
Yamoussoukro	50	4	26	20	34.00			

TABLE 22: FREQUENCIES OF ACE-1 IN MOSQUITOES

RR: Homozygous with two resistant Ace-1G119St alleles;

RS: Heterozygous with one resistant Ace-1G119Sallele and one susceptible allele;

SS: Homozygous with two susceptible alleles.

REFERENCES

Bass C, Nikou D, Donnelly MJ, Williamson MS, Ranson H, Ball A, Vontas J, Field LM (2007). Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malar J. 2007 Aug 13; 6:111.

Brogdon W, Chan A (2010). Guidelines for Evaluating Insecticide Resistance in Vectors Using the CDC Bottle Bioassay/Methods in Anopheles Research. Second edition. CDC Atlanta USA: CDC technical report. P 343.

Collins FH, Mendez MA, Rasmussen MO, Mehaffey PC, Besansky NJ, Finnerty V. A Ribosomal RNA Gene Probe Differentiates Member Species of the *Anopheles gambiae* Complex. Am J Trop Med Hyg. 1987; 37(1):37–41.

Gillies, M.T. and Coetzee, M. (1987) A Supplement to the Anophelinae of Africa South of the Sahara. South African Institute for Medical Research, 55, 1-143.

Santolamazza F, Mancini E, Simard F, Qi Y, Tu Z, della Torre A (2008). Insertion polymorphisms of SINE200 retrotransposons within speciation islands of *Anopheles gambiae* molecular forms. Malar J. 2008; 7:163.

WHO (2016): Test procedures for insecticide resistance monitoring in malaria vector mosquitoes – 2nd ed ISBN 978 92 4 151157 5